
Network Working Group
Request for Comments: 2525
Category: Informational

V. Paxson
Editor

ACIRI / ICs1
M. Allman

NASA Glenn Research Center/Sterling Software
S. Dawson

Real-Time Computing Laboratory
W. Fenner
Xerox PARC
J. Griner

NASA Glenn Research Center
I. Heavens

Spider Software Ltd.
K. Lahey

NASA Ames Research Center/MRJ
J. Semke

Pittsburgh Supercomputing Center
B. Volz

Process Software Corporation
March 1999

Known TCP Implementation Problems

Status of this Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Table of Contents

1. INTRODUCTION . 2
2. KNOWN IMPLEMENTATION PROBLEMS 3
2.1 No initial slow start . 3
2.2 No slow start after retransmission timeout 6
2.3 Uninitialized CWND . 9
2.4 Inconsistent retransmission . 11
2.5 Failure to retain above-sequence data 13
2.6 Extra additive constant in congestion avoidance 17
2.7 Initial RTO too low . 23
2.8 Failure of window deflation after loss recovery 26
2.9 Excessively short keepalive connection timeout 28
2.10 Failure to back off retransmission timeout 31

Pzxscn, et. al. Informational [Page 11

RFC 2525 TCP Implementation Problems March 1999

2.11 Insufficient interval between keepalives 34
2.12 Window probe deadlock . 36
2.13 Stretch ACK violation 40
2.14 Retransmission sends multiple packets 43
2.15 Failure to send FIN notification promptly 45
2.16 Failure to send a RST after Half Duplex Close 47
2.17 Failure to RST on close with data pending 50
2.18 Options missing from TCP MSS calculation 54

3. SECURITY CONSIDERATIONS . 56
4. ACKNOWLEDGEMENTS . 56
5 . REFERENCES . 57
6. AUTHORS' DRESSES ... 58
7. FULL COPYRIGHT STATEMENT . 60

1. Introduction

This memo catalogs a number of known TCP implementation problems.
The goal in doing so is to improve conditions in the existing
Internet by enhancing the quality of current TCP/IP implementations.
It is hoped that both performance and correctness issues can be
resolved by making implementors aware of the problems and their
solutions. In the long term, it is hoped that this will provide a
reduction in unnecessary traffic on the network, the rate of
connection failures due to protocol errors, and load on network
servers due to time spent processing both unsuccessful connections
and retransmitted data. This will help to ensure the stability of
the global Internet.

Each problem is defined as follows:

Name of Problem
The name associated with the problem. In this memo, the name is
given as a subsection heading.

Classification
One or more problem categories for which the problem is
classified: "congestion controll' , tlperformancelf , "reliability" ,
Itresource management".

Description
A definition of the problem, succinct but including necessary
background material.

Significance
A brief summary of the sorts of environments for which the problem
is significant:

Paxson, et. al. Informational

RFC 2525 TCP Implementation Problems March 1999

Implications
Why the problem is viewed as a problem.

Relevant RFCs
The RFCs defining the TCP specification with which the problem
conflicts. These RFCs often qualify behavior using terms such as
MUST, SHOULD, MAY, and others written capitalized. See RFC 2119
for the exact interpretation of these terms.

Trace file demonstrating the problem
One or more ASCII trace files demonstrating the problem, if
applicable.

Trace file demonstrating correct behavior
One or more examples of how correct behavior appears in a trace,
if applicable.

References
References that further discuss the problem.

How to detect
How to test an implementation to see if it exhibits the problem.
This discussion may include difficulties and subtleties associated
with causing the problem to manifest itself, and with interpreting
traces to detect the presence of the problem (if applicable).

How to fix
For known causes of the problem, how to correct the
implementation.

2. Known implementation problems

2.1.

Name of Problem
No initial slow start

Classification
Congestion control

Description
When a TCP begins transmitting data, it is required by RFC 1122,
4.2.2.15, to engage in a tlslow start" by initializing its
congestion window, cwnd, to one packet (one segment of the maximum
size). (Note that an experimental change to TCP, documented in
LRFC24141, allows an initial value somewhat larger than one
packet.) It subsequently increases cwnd by one packet for each
ACK it receives for new data. The minimum of cwnd and the

Paxson, et. al. Informational [Page 31

RFC 2525 TCP Implementation Problems March 1999

receiver's advertised window bounds the highest sequence number
the TCP can transmit. A TCP that fails to initialize and
increment cwnd in this fashion exhibits "NO initial slow start".

Sisnificance
I

In congested environments, detrimental to the performance of other
connections, and possibly to the connection itself.

Implications
A TCP failing to slow start when beginning a connection results in
traffic bursts that can stress the network, leading to excessive
queueing delays and packet loss.

Implementations exhibiting this problem might do so because they
suffer from the general problem of not including the required
congestion window. These implementations will also suffer from
"NO slow start after retransmission timeout".

There are different shades of "NO initial slow start". From the
perspective of stressing the network, the worst is a connection
that simply always sends based on the receiver's advertised
window, with no notion of a separate congestion window. Another
form is described in "Uninitialized CWND" below.

Relevant RFCs
RFC 1122 requires use of slow start. RFC 2001 gives the specifics
of slow start.

Trace file demonstrating it
Made using tcpdump [Jacobson891 recording at the connection
responder. No losses reported by the packet filter.

10:40:42.244503 B > A:

10:40:42.259908 A > B:

10:40:42.389992 B > A:
10:40:42.664975 A > B:
10:40:42.700185 A > B:
10:40:42.718017 A > B:
10:40:42.762945 A > B:
10:40:42.811273 A > B:
10:40:42.829149 A > B:
10:40:42.853687 B > A:
10:40:42.864031 B > A:

Paxson, et. al.

S 1168512000:1168512000(0) win 32768
cmss 1460,nop,wscale O B (DF) [tos Ox81

ack 1168512001 win 32768 cmss 1460>
S 3688169472 :3688169472 (0)

. ack 1 win 33580 (DF) [tos Ox81
P ~ 5 1 3 (512) ack 1 win 32768
. 513:1973 (1460) ack 1 win 32768
. 1973:3433(1460) ack 1 win 32768
. 3433:4893 (1460) ack 1 win 32768
. 4893 :6353 (1460) ack 1 win 32768
. 6353:7813(1460) ack 1 win 32768
. ack 1973 win 33580 (DF) [tos Ox81
. ack 3433 win 33580 (DF) [tos Ox81

Informational [Page 41

RFC 2525 TCP Implementation Problems March 1999

After the third packet, the connection is established. A, the
connection responder, begins transmitting to B, the connection
initiator. Host A quickly sends 6 packets comprising 7812 bytes,
even though the SYN exchange agreed upon an MSS of 1460 bytes
(implying an initial congestion window of 1 segment corresponds to
1460 bytes), and so A should have sent at most 1460 bytes.

The ACKs sent by B to A in the last two lines indicate that this
trace is not a measurement error (slow start really occurring but
the corresponding ACKs having been dropped by the packet filter).

A second trace confirmed that the problem is repeatable.

Trace file demonstrating correct behavior
Made using tcpdump recording at the connection originator. No
losses reported by the packet filter.

12:35:31.914050 C > D: S

12:35:32.068819 D > C: S

12:35:32.069341 C D: .
12:35:32.075213 C > D: P
12:35:32.286073 D > C: .
12:35:32.287032 C > D: .
12:35:32.287506 C > D: .
12:35:32.432712 D > C: .
12:35:32.433690 C > D: .
12:35:32.434481 C D: .
12:35:32.435032 C > D: .
12:35:32.594526 D C: .
12:35:32.595465 C > D: .
12:35:32.595947 C > D: .
12:35:32.596414 C > D: .
12:35:32.596888 C > D: .
12:35:32.733453 D > C: .

1448571845:1448571845 (0)
win 4380 Cmss 1460>
1755712000:1755712000 (0)
ack 1448571846 win 4096
ack 1 win 4608
1:513(512) ack 1 win 4608
ack 513 win 4096
513:1025(512) ack 1 win 4608
1025:1537(512) ack 1 win 4608
ack 1537 win 4096
1537:2049(512) ack 1 win 4608
2049:2561(512) ack 1 win 4608
2561:3073(512) ack 1 win 4608
ack 3073 win 4096
3073:3585 (512) ack 1 win 4608
3585:4097(512) ack 1 win 4608
4097:4609(512) ack 1 win 4608
4609:5121(512) ack 1 win 4608
ack 4097 win 4096

References
This problem is documented in [Paxson97].

How to detect
For implementations always manifesting this problem, it shows up
immediately in a packet trace or a sequence plot, as illustrated
above.

Paxson, et. al. Informational [Page 51

RFC 2525 TCP Implementation Problems March 1999

How to fix
If the root problem is that the implementation lacks a notion of a
congestion window, then unfortunately this requires significant
work to fix. However, doing so is important, as such
implementations also exhibit "NO slow start after retransmission
t imeout .

2.2.

Name of Problem
No slow start after retransmission timeout

Classification
Congestion control

Description
When a TCP experiences a retransmission timeout, it is required by
RFC 1122, 4.2.2.15, to engage in llslow start" by initializing its
congestion window, cwnd, to one packet (one segment of the maximum
size). It subsequently increases cwnd by one packet for each ACK
it receives for new data until it reaches the "congestion
avoidance" threshold, ssthresh, at which point the congestion
avoidance algorithm for updating the window takes over. A TCP
that fails to enter slow start upon a timeout exhibits "No slow
start after retransmission timeout".

Significance
In congested environments, severely detrimental to the performance
of other connections, and also the connection itself.

Implications
Entering slow start upon timeout forms one of the cornerstones of
Internet congestion stability, as outlined in [Jacobson88]. If
TCPs fail to do so, the network becomes at risk of suffering
"congestion collapseII [RFC896] .

Relevant RFCs
RFC 1122 requires use of slow start after loss. RFC 2001 gives
the specifics of how to implement slow start. RFC 896 describes
congestion collapse.

The retransmission timeout discussed here should not be confused
with the separate "fast recoveryll retransmission mechanism
discussed in RFC 2001.

Trace file demonstrating it
Made using tcpdump recording at the sending TCP (A) . No losses
reported by the packet filter.

Paxson, et. al. Informational [Page 61

RFC 2525 TCP Implementation Problems March 1999

10:40:59.090612 B > A: .
10:40:59.222025 A > B: .
10:40:59.868871 A > B: .
10:41:00.016641 B > A: .
10:41:00.036709 A > B: .
10:41:00.045231 A > B: .
10:41:00.053785 A > B: .
10:41:00.062426 A > B: .
10:41:00.071074 A > B: .
10:41:00.079794 A > B: .
10:41:00.089304 A > B: .
10:41:00.097738 A > B: .
10:41:00.106409 A > B: .
10:41:00.115024 A > B: .
10:41:00.123576 A > B: .
10:41:00.132016 A B: .
10:41:00.141635 A > B: .
10:41:00.150094 A > B: .
10:41:00.158552 A > B: .
10:41:00.167053 A > B: .
10:41:00.175518 A > B: .
10:41:00.210835 A > B: .
10:41:00.226108 A > B: .
10:41:00.241524 B > A: .

ack 357125 win 33580 (DF) [tos Ox81
357125 : 358585 (1460) ack 1 win 32768
357125:358585(1460) ack 1 win 32768
ack 364425 win 33580 (DF) [tos Ox81
364425:365885(1460) ack 1 win 32768
365885:367345(1460) ack 1 win 32768
367345:368805 (1460) ack 1 win 32768
368805:370265(1460) ack 1 win 32768
370265:371725(1460) ack 1 win 32768
371725:373185(14601 ack 1 win 32768
373185:374645(1460) ack 1 win 32768
374645:376105 (1460) ack 1 win 32768
376105:377565(1460) ack 1 win 32768
377565:379025(1460) ack 1 win 32768
379025:380485(1460) ack 1 win 32768
380485:381945(1460) ack 1 win 32768
381945:383405(1460) ack 1 win 32768
383405:384865(1460) ack 1 win 32768
384865:386325 (1460) ack 1 win 32768
386325:387785(1460) ack 1 win 32768
387785:389245 (1460) ack 1 win 32768
389245:390705(1460) ack 1 win 32768
390705:392165(1460) ack 1 win 32768
ack 389245 win 8760 (DF) [tos Ox81

The first packet indicates the ack point is 357125. 130 msec
after receiving the ACK, A transmits the packet after the ACK
point, 357125:358585. 640 msec after this transmission, it
retransmits 357125:358585, in an apparent retransmission timeout.
At this point, A's cwnd should be one MSS, or 1460 bytes, as A
enters slow start. The trace is consistent with this possibility.

B replies with an ACK of 364425, indicating that A has filled a
sequence hole. At this point, A's cwnd should be 1460*2 = 2920
bytes, since in slow start receiving an ACK advances cwnd by MSS.
However, A then launches 19 consecutive packets, which is
inconsistent with slow start.

A second trace confirmed that the problem is repeatable.

Trace file demonstrating correct behavior
Made using tcpdump recording at the sending TCP (C) . No losses
reported by the packet filter.

12:35:48.442538 C > D: P 465409:465921(512) ack 1 win 4608
12:35:48.544483 D > C: . ack 461825 win 4096
12:35:48.703496 D > C: . ack 461825 win 4096
12:35:49.044613 C > D: . 461825:462337(512) ack 1 win 4608

Paxson, et. al. Informational [Page 71

RFC 2525 TCP Implementation Problems March 1999

12:35:49.192282 D > C: . ack 465921 win 2048
12:35:49.192538 D C: . ack 465921 win 4096
12:35:49.193392 C > D: P 465921:466433(512) ack 1 win 4608
12:35:49.194726 C D: P 466433:466945(512) ack 1 win 4608
12:35:49.350665 D C: . ack 466945 win 4096
12:35:49.351694 C > D: . 466945:467457(512) ack 1 win 4608
12:35:49.352168 C D: . 467457:467969(512) ack 1 win 4608
12:35:49.352643 C > D: . 467969:468481(512) ack 1 win 4608
12:35:49.506000 D > C: . ack 467969 win 3584

After C transmits the first packet shown to D, it takes no action
in response to D ' s ACKs for 461825, because the first packet
already reached the advertised window limit of 4096 bytes above
461825. 600 msec after transmitting the first packet, C
retransmits 461825:462337, presumably due to a timeout. Its
congestion window is now MSS (512 bytes).

D acks 465921, indicating that C ' s retransmission filled a
sequence hole. This ACK advances C's cwnd from 512 to 1024. Very
shortly after, D acks 465921 again in order to update the offered
window from 2048 to 4096. This ACK does not advance cwnd since it
is not for new data. Very shortly after, C responds to the newly
enlarged window by transmitting two packets. D acks both,
advancing cwnd from 1024 to 1536. C in turn transmits three
packets.

References
This problem is documented in LPaxson971.

How to detect
Packet loss is common enough in the Internet that generally it is
not difficult to find an Internet path that will force
retransmission due to packet loss.

If the effective window prior to loss is large enough, however,
then the TCP may retransmit using the "fast recovery" mechanism
described in RFC 2001. In a packet trace, the signature of fast
recovery is that the packet retransmission occurs in response to
the receipt of three duplicate ACKs, and subsequent duplicate ACKs
may lead to the transmission of new data, above both the ack point
and the highest sequence transmitted so far. An absence of three
duplicate ACKs prior to retransmission suffices to distinguish
between timeout and fast recovery retransmissions. In the face of
only observing fast recovery retransmissions, generally it is not
difficult to repeat the data transfer until observing a timeout
retransmission.

Paxson, et. al. Informational [Page 81

RFC 2525 TCP Implementation Problems March 1999

Once armed with a trace exhibiting a timeout retransmission,
determining whether the TCP follows slow start is done by
computing the correct progression of cwnd and comparing it to the
amount of data transmitted by the TCP subsequent to the timeout
retransmission.

How to fix
If the root problem is that the implementation lacks a notion of a
congestion window, then unfortunately this requires significant
work to fix. However, doing so is critical, f o r reasons outlined
above.

2.3.

Name of Problem
Uninitialized CWXD

Classification
Congestion control

Description
As described above for "No initial slow start", when a TCP
connection begins cwnd is initialized to one segment (or perhaps a
few segments, if experimenting with CRFC24141). One particular
form of "No initial slow start'l, worth separate mention as the bug
is fairly widely deployed, is "Uninitialized CWND". That is,
while the TCP implements the proper slow start mechanism, it fails
to initialize cwnd properly, so slow start in fact fails to occur.

One way the bug can occur is if, during the connection
establishment handshake, the SYN ACK packet arrives without an MSS
option. The faulty implementation uses receipt of the MSS option
to initialize cwnd to one segment; if the option fails to arrive,
then cwnd is instead initialized to a very large value.

Significance
In congested environments, detrimental to the performance of other
connections, and likely to the connection itself. The burst can
be so large (see below) that it has deleterious effects even in
uncongested environments.

Implications
A TCP exhibiting this behavior is stressing the network with a
large burst of packets, which can cause loss in the network.

Relevant RFCs
RFC 1122 requires use of slow start. RFC 2001 gives the specifics
of slow start.

Paxson, et. al. Informational [Page 91

RFC 2525 TCP Implementation Problems March 1999

Trace file demonstrating it
This trace was made using tcpdump running on host A. Host A is
the sender and host B is the receiver. The advertised window and
timestamp options have been omitted for clarity, except for the
first segment sent by host A. Note that A sends an MSS option in
its initial SYN but B does not include one in its reply.

16:56:02.226937 A > B: S 237585307:237585307(0) win 8192

16:56:02.557135 B > A: S 1617216000:1617216000(0)

16:56:02.557788 A > B: . ack 1 win 8192
16:56:02.566014 A > B: . 1:537(536) ack 1
16:56:02.566557 A > B: . 537:1073(536) ack 1
16:56:02.567120 A > B: . 1073:1609(536) ack 1
16:56:02.567662 A > B: P 1609:2049(440) ack 1
16:56:02.568349 A > B: . 2049:2585(536) ack 1
16:56:02.568909 A > B: . 2585:3121(536) ack 1

cmss 536,nop,wscale O,nop,nop,timestamp[Itcpl>

ack 237585308 win 16384

[54 additional burst segments deleted f o r brevity]

16:56:02.936638 A > B: . 32065:32601(536) ack 1
16:56:03.018685 B > A: . ack 1

After the three-way handshake, host A bursts 61 segments into the
network, before duplicate ACKs on the first segment cause a
retransmission to occur. Since host A did not wait for the ACK on
the first segment before sending additional segments, it is
exhibiting IIUnini tiali zed CWND"

Trace file demonstrating correct behavior

See the example for "NO initial slow start".

References
This problem is documented in [Paxson971.

How to detect
This problem can be detected by examining a packet trace recorded
at either the sender or the receiver. However, the bug can be
difficult to induce because it requires finding a remote TCP peer
that does not send an MSS option in its SYN ACK.

How to fix
This problem can be fixed by ensuring that cwnd is initialized
upon receipt of a SYN ACK, even if the SYN ACK does not contain an
MSS option.

Paxson, et. al. Informational [Page 101

R.FC 2525 TCP Implementation Problems March 1999

2.4,

Name of Problem
Inconsistent retransmission

Classification
Reliability

Description
If, for a given sequence number, a sending TCP retransmits
different data than previously sent for that sequence number, then
a strong possibility arises that the receiving TCP will
reconstruct a different byte stream than that sent by the sending
application, depending on which instance of the sequence number it
accepts.

Such a sending TCP exhibits "Inconsistent retransmission".

Significance
Critical for all environments.

Implications
Reliable delivery of data is a fundamental property of TCP.

Relevant RFCs
RFC 793, section 1.5, discusses the central role of reliability in
TCP operation.

Trace file demonstrating it
Made using tcpdump recording at the
reported by the packet filter.

receiving TCP

12:35:53.145503 A > B: FP 90048435:90048461(26)
ack 393464682 win 4096

4500 0042 9644 0000
3006 e4c2 86bl 0401 83f3 OlOa b2a4 0015
055e 07b3 1773 cb6a 5019 1000 68a9 0000

data starts here>504f 5254 2031 3334 2c31 3737*2c34 2c31
2c31 3738 2c31 3635 OdOa

12:35:53.146479 B > A: R 393464682:393464682(0) win 8192
12:35:53.851714 A B: FP 90048429:90048463(34)

ack 393464682 win 4096
4500 004a 965b 0000

3006 e4a3 86bl 0401 83f3 OlOa b2a4 0015
055e 07ad 1773 cb6a 5019 1000 8bd3 0000

data starts here>5041 5356 OdOa 504f 5254 2031 3334 2c31
3737*2c31 3035 2c31 3431 2c34 2c31 3539
OdOa

No losses

Paxson, et. a1 . Informational [Page 113

RFC 2525 TCP Implementation Problems March 1999

The sequence numbers shown in this trace are absolute and not
adjusted to reflect the ISN. The 4-digit hex values show a dump
of the packet's IP and TCP headers, as well as payload. A first
sends to B data for 90048435:90048461. The corresponding data
begins with hex words 504f, 5254, etc.

E responds with a RST. Since the recording location was local to
B, it is unknown whether A received the RST.

A then sends 90048429:90048463, which includes six sequence
positions below the earlier transmission, all 26 positions of the
earlier transmission, and two additional sequence positions.

The retransmission disagrees starting just after sequence
90048447, annotated above with a leading I * ' . These two bytes
were originally transmitted as hex 2c34 but retransmitted as hex
2c31. Subsequent positions disagree as well.

This behavior has been observed in other traces involving
different hosts. It is unknown how to repeat it.

In this instance, no corruption would occur, since B has already
indicated it will not accept further packets from A.

A- second example illustrates a slightly different instance of the
problem. The tracing again was made with tcpdump at the receiving
TCP (D) .

22:23:58.645829 C > D: P 185:212(27) ack 565 win 4096
4500 0043 90a3 0000

3306 0734 cbfl 9eef 83f3 OlOa 0525 0015
a3a2 faba 578c 70a4 5018 1000 9a53 0000

data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
2c32 3339 2c35 2c34 330d Oa

22:23:58.646805 D > C: . ack 184 win 8192
4500 0028 beeb 0000

3e06 ce06 83f3 OlOa cbfl 9eef 0015 0525
578c 70a4 a3a2 fab9 5010 2000 342f 0000

4500 0043 9435 0000
3306 03a2 cbfl 9eef 83f3 OlOa 0525 0015
a3a2 fabb 578c 70a4 5019 1000 9a51 0000

data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
2c32 3339 2c35 2c34 330d Oa

22:31:36.532244 C > D: FP 186:213(27) ack 565 win 4096

Paxson, et. al. Informational [Page 121

RFC 2525 TCP Implementation Problems March 1999

In this trace, sequence numbers are relative. C sends 185:212,
but D only sends an ACK for 184 (so sequence number 184 is
missing). C then sends 186:213. The packet payload is identical
to the previous payload, but the base sequence number is one
higher, resulting in an inconsistent retransmission.

Neither trace exhibits checksum errors.

Trace file demonstrating correct behavior
(Omitted, as presumably correct behavior is obvious.)

References
None known.

How to detect
This problem unfortunately can be very difficult to detect, since
available experience indicates it is quite rare that it is
manifested. No I1trigger1* has been identified that can be used to
reproduce the problem.

How to fix
In the absence of a known lltriggerll, we cannot always assess how
to fix the problem.

In one implementation (not the one illustrated above), the problem
manifested itself when (1) the sender received a zero window and
stalled; (2) eventually an ACK arrived that offered a window
larger than that in effect at the time of the stall; (3) the
sender transmitted out of the buffer of data it held at the time
of the stall, but (4) failed to limit this transfer to the buffer
length, instead using the newly advertised (and larger) offered
window. Consequently, in addition to the valid buffer contents,
it sent whatever garbage values followed the end of the buffer.
If it then retransmitted the corresponding sequence numbers, at
that point it sent the correct data, resulting in an inconsistent
retransmission. Note that this instance of the problem reflects a
more general problem, that of initially transmitting incorrect
data.

2. ,5.

Name of Problem
Failure to retain above-sequence data

Classification
Congestion control, performance

1

Paxson, et. al. Informational [Page 131

RFC 2525 TCP Implementation Problems March 1999

Description
When a TCP receives an "above sequence" segment, meaning one with
a sequence number exceeding RCV.NXT but below RCV.NXT+RCV.WND, it
SHOULD queue the segment for later delivery (RFC 1122, 4.2.2.20).
(See RFC 793 for the definition of RCV.NXT and RCV.WND.1 A TCP
that fails to do so is said to exhibit "Failure to retain above-
sequence data".

It may sometimes be appropriate for a TCP to discard above-
sequence data to reclaim memory. If they do so only rarely, then
we would not consider them to exhibit this problem. Instead, the
particular concern is with TCPs that always discard above-sequence
data.

Siqnificance
I

In environments prone to packet loss, detrimental to the
performance of both other connections and the connection itself.

Implications
In times of congestion, a failure to retain above-sequence data
will lead to numerous otherwise-unnecessary retransmissions,
aggravating the congestion and potentially reducing performance by
a large factor.

Relevant RFCs
RFC 1122 revises RFC 793 by upgrading the latter's MAY to a SHOULD
on this issue.

Trace file demonstrating it
Made using tcpdump recording at the receiving TCP. No losses
reported by the packet filter.

B is the TCP sender, A the receiver. A exhibits failure to retain
above sequence-data:

10:38:10.164860 B > A: . 221078:221614(536) ack 1 win 33232 [tos Ox81
10:38:10.170809 B > A: . 221614:222150(536) ack 1 win 33232 [tos 0x81
10:38:10.177183 B > A: . 222150:222686(536) ack 1 win 33232 [tos Ox81
10:38:10.225039 A > B: . ack 222686 win 25800

Here B has sent up to (relative) sequence 222686 in-sequence, and
A accordingly acknowledges.

10:38:10,268131 B > A: . 223222:223758(536) ack 1 win 33232 [tos Ox81
10:38:10.337995 B > A: . 223758:224294(536) ack 1 win 33232 [tos Ox81
10:38:10.344065 B =. A: . 224294:224830(536) ack 1 win 33232 [tos Ox81
10:38:10.350169 B > A: . 224830:225366(536) ack 1 win 33232 [tos Ox81
10:38:10.356362 B > A: . 225366:225902(536) ack 1 win 33232 [tos Ox81

Paxson, et. al. Informational [Page 141

RFC 2525 TCP Implementation Problems March 1999

10:38:10.362445 B > A: .
10:38:10.368579 B > A: .
10:38:10.374732 B > A: .
10:38:10.380825 B > A: .
10:38:10.387027 B > A: .
10:38:10.393053 B > A: .
10:38:10.399193 B > A: .
10:38:10.405356 B > A: .

225902:226438(536) ack 1 win 33232
226438:226974(536) ack 1 win 33232
226974:227510(536) ack 1 win 33232
227510:228046(536) ack 1 win 33232
228046:228582(536) ack 1 win 33232
228582:229118(536) ack 1 win 33232
229118:229654(536) ack 1 win 33232
229654:230190(536) ack 1 win 33232

[tos Ox81
[tos Ox81
[tos Ox81
[tos Ox81
[tos Ox81
[tos Ox81
[tos Ox81
[tos Ox81

A now receives 13 additional packets from B. These are above-
sequence because 222686:223222 was dropped. The packets do
however fit within the offered window of 25800. A does not
generate any duplicate ACKs for them.

The trace contributor (V. Paxson) verified that these 13 packets
had valid IP and TCP checksums.

10:38:11.917728 B > A: . 222686:223222(536) ack 1 win 33232 [tos Ox81
10:38:11.930925 A > B: . ack 223222 win 32232

B times out for 222686:223222 and retransmits it. Upon receiving
it, A only acknowledges 223222. Had it retained the valid above-
sequence packets, it would instead have ack’d 230190.

10:38:12.048438 3 > A: . 223222:223758(536) ack 1 win 33232 Ctos Ox81
10:38:12.054397 B > A: . 223758:224294(536) ack 1 win 33232 [tos Ox81
10:38:12.068029 A > B: . ack 224294 win 31696

B retransmits two more packets, and A only acknowledges them.
This pattern continues as B retransmits the entire set of
previously-received packets.

A second trace confirmed that the problem is repeatable.

Trace file demonstrating correct behavior
Made using tcpdump recording at the receiving TCP (C) . No losses
reported by the packet filter.

09:11:25.790417 D > C: . 33793:34305(512) ack 1 win 61440
09:11:25.791393 D > C: . 34305:34817(512) ack 1 win 61440
09:11:25.792369 D > C: . 34817:35329(512) ack 1 win 61440
09:11:25.792369 D > C: . 35329:35841(512) ack 1 win 61440
09:11:25.793345 D > C: . 36353:36865(512) ack 1 win 61440
09:11:25.794321 C > D: . ack 35841 win 59904

A sequence hole occurs because 35841:36353 has been dropped.

Paxson, et. al. Informational [Page 151

RFC 2525 TCP Implementation Problems March 1999

09:11:25.794321 D > C: . 36865:37377(512) ack 1 win 61440
09:11:25.794321 C > D: . ack 35841 win 59904
09:11:25.795297 D > C: . 37377:37889(512) ack 1 win 61440
09:11:25.795297 C > D: . ack 35841 win 59904
09:11:25.796273 C > D: . ack 35841 win 61440
09:11:25.798225 D > C : . 37889:38401(512) ack 1 win 61440
09:11:25.799201 C > D: . ack 35841 win 61440
09:11:25.807009 D > C: . 38401:38913(512) ack 1 win 61440
09:11:25.807009 C > D: . ack 35841 win 61440
(many additional lines omitted)
09:11:25.884113 D > C: . 52737:53249(512) ack 1 win 61440
09:11:25.884113 C > D: . ack 35841 win 61440

Each additional, above-sequence packet C receives from D elicits a
duplicate ACK for 35841.

09:11:25.887041 D > C : . 35841:36353(512) ack 1 win 61440
09:11:25.887041 C > D: . ack 53249 win 44032
D retransmits 35841:36353 and C acknowledges receipt of data all
the way up to 53249.

References
This problem is documented in [Paxson971.

How to detect
Packet loss is common enough in the Internet that generally it is
not difficult to find an Internet path that will result in some
above-sequence packets arriving. A TCP that exhibits "Failure to
retain . . . ! I may not generate duplicate ACKs for these packets.
However, some TCPs that do retain above-sequence data also do not
generate duplicate ACKs, so failure to do so does not definitively
identify the problem. Instead, the key observation is whether
upon retransmission of the dropped packet, data that was
previously above-sequence is acknowledged.

Two considerations in detecting this problem using a packet trace
are that it is easiest to do so with a trace made at the TCP
receiver, in order to unambiguously determine which packets
arrived successfully, and that such packets may still be correctly
discarded if they arrive with checksum errors. The latter can be
tested by capturing the entire packet contents and performing the
IP and TCP checksum algorithms to verify their integrity; or by
confirming that the packets arrive with the same checksum and
contents as that with which they were sent, with a presumption
that the sending TCP correctly calculates checksums for the
packets it transmits.

Paxson, et. al. Informational [Page 161

RFC 2525 TCP Implementation Problems March 1999

It is considerably easier to verify that an implementation does
NOT exhibit this problem. This can be done by recording a trace
at the data sender, and observing that sometimes after a
retransmission the receiver acknowledges a higher sequence number
than just that which was retransmitted.

How to fix
If the root problem is that the implementation lacks buffer, then
then unfortunately this requires significant work to fix.
However, doing so is important, for reasons outlined above.

2.6.

Name of Problem
Extra additive constant in congestion avoidance

Classification
Congestion control / performance

Description
RFC 1122 section 4.2.2.15 states that TCP MUST implement
Jacobson's "congestion avoidance" algorithm [Jacobson881 , which
calls for increasing the congestion window, cwnd, by:

MSS * MSS / cwnd

for each ACK received for new data [RFC2001]. This has the effect
of increasing cwnd by approximately one segment in each round trip
time .
Some TCP implementations add an additional fraction of a segment
(typically MSS/8) to cwnd for each ACK received for new data
LStevens94, Wright951 :

(MSS * MSS / cwnd) + MSS/8
These implementations exhibit "Extra additive constant in
congestion avoidance".

Significance
May be detrimental to performance even in completely uncongested
environments (see Implications).

In congested environments, may also be detrimental to the
performance of other connections.

Paxson, et. al. Informational [Page 171

RFC 2 5 2 5 TCP Implementation Problems March 1999

Implications
The extra additive term allows a TCP to more aggressively open its
congestion window (quadratic rather than linear increase). For
congested networks, this can increase the loss rate experienced by
all connections sharing a bottleneck with the aggressive TCP.

However, even for completely uncongested networks, the extra
additive term can lead to diminished performance, as follows. In
congestion avoidance, a TCP sender probes the network path to
determine its available capacity, which often equates to the
number of buffers available at a bottleneck link. With linear
congestion avoidance, the TCP only probes for sufficient capacity
(buffer) to hold one extra packet per RTT.

Thus, when it exceeds the available capacity, generally only one
packet will be lost (since on the previous RTT it already found
that the path could sustain a window with one less packet in
flight). If the congestion window is sufficiently large, then the
TCP will recover from this single loss using fast retransmission
and avoid an expensive (in terms of performance) retransmission
t imeout .
However, when the additional additive term is used, then cwnd can
increase by more than one packet per RTT, in which case the TCP
probes more aggressively. If in the previous RTT it had reached
the available capacity of the path, then the excess due to the
extra increase will again be lost, but now this will result in
multiple losses from the flight instead of a single loss. TCPs
that do not utilize SACK [RFC2018] generally will not recover from
multiple losses without incurring a retransmission timeout
[Fa1196,Hoe96], significantly diminishing performance.

Relevant RFCs
RFC 1122 requires use of the "congestion avoidancell algorithm.
RFC 2001 outlines the fast retransmit/fast recovery algorithms.
RFC 2018 discusses the SACK option.

Trace file demonstrating it
Recorded using tcpdump running on the same FDDI LAN as host A .
Host A is the sender and host €3 is the receiver. The connection
establishment specified an MSS of 4,312 bytes and a window scale
factor of 4. We omit the establishment and the first 2.5 MB of
data transfer, as the problem is best demonstrated when the window
has grown to a large value. At the beginning of the trace
excerpt, the congestion window is 31 packets. The connection is
never receiver-window limited, so we omit window advertisements
from the trace for clarity.

Paxson, et. al. Informational [Page 181

RFC 2525 TCP Implementation Problems March 1999

1 1 : 4 2 : 0 7 . 6 9 7 9 5 1 B > A: .
11 :42 :07 .699388 A > B: .
11 :42 :07 .699962 A > B: .
11 :42 :07 .700012 B > A: .
11 :42 :07 .701081 A B: .
11 :42 :07 .701656 A > B: .
11 :42 :07 .701739 B A: .
1 1 : 4 2 : 0 7 . 7 0 2 6 8 5 A > B: .
1 1 : 4 2 : 0 7 . 7 0 3 2 5 7 A > B: .
11 :42 :07 .703295 B > A: .
11:42:07.704414 A > B: .
11 :42 :07 .704989 A > B: .
11 :42 :07 .705040 B > A: .
11 :42 :07 .705935 A > B: .
11 :42 :07 .706506 A > B: .
11 :42 :07 .706544 B > A: .
11 :42 :07 .707480 A > B : .
1 1 : 4 2 : 0 7 . 7 0 8 0 5 1 A > B: .
11 :42 :07 .708088 B > A: .
11 :42 :07 .709030 A > B: .
11 :42 :07 .709604 A > B: .
11 :42 :07 .710175 A > B: .
11:42:07.710215 B > A: .
1 1 : 4 2 : 0 7 . 7 1 0 7 9 9 A > B: .
11 :42 :07 .711368 A > B: .
11:42:07.711405 B > A: .
11 :42 :07 .712323 A > B: .
11 :42 :07 .712898 A > B: .
11:42:07.712938 B > A: .
11 :42 :07 .713926 A > B: .
1 1 : 4 2 : 0 7 . 7 1 4 5 0 1 A > B : .
11 :42 :07 .714547 B > A: .
11 :42 :07 .715747 A > B: .
11:42:07.716287 A > B: .
11:42:07.716328 B > A: .
11:42:07.717146 A > B: .
11 :42 :07 .717717 A > B : .
11:42:07.717762 B > A: .
11:42:07.718754 A > B: .
1 1 : 4 2 : 0 7 . 7 1 9 3 3 1 A > B : .
11 :42 :07 .719906 A > B : .

a.ck 2383006
2508054 :2512366 (4312)
2512366 :2516678 (4312)
ack 2391630
2516678 :2520990 (4312)
2520990 :2525302 (4312)
ack 2400254
2525302 :2529614 (4312)
2529614 :2533926 (4312)
ack 2408878
2533926 :2538238 (4312)
2538238 :2542550 (4312)
ack 2417502
2542550 :2546862 (4312)
2546862 :2551174 (4312)
ack 2426126
2551174 : 2555486 (4312)
2555486:2559798(4312)
ack 2434750
2559798:2564110(4312)
2564110:2568422(4312)
2568422: 2572734 (4312) *
ack 2443374
2572734: 2577046 (4312)
2577046:2581358(4312)
ack 2451998
2581358:2585670(4312)
2585670:2589982(4312)
ack 2460622
2589982:2594294 (4312)
2594294:2598606(4312)
ack 2469246
2598606:2602918 (4312)
2602918:2607230(4312)
ack 2477870
2607230:2611542 (4312)
2611542:2615854 (4312)
ack 2486494
2615854:2620166 (4312)
2620166 :2624478 (4312)
2624478:2628790 (4312) * *

11 :42 :07 .719958 B > A: . ack 2495118
11 :42 :07 .720500 A > B: . 2628790:2633102(4312)
11:42:07.721080 A > B: . 2633102:2637414(4312)
11:42:07.721739 B > A: . ack 2503742
11:42:07.722348 A > B : . 2637414:2641726(4312)

Paxson, et. al. Informational [Page 191

RFC 2525 TCP Implementation Problems March 1999

11:42:07.722918 A > B: . 2641726:2646038(4312)
11:42:07.769248 B A: . ack 2512366

The receiver's acknowledgment policy is one ACK per two packets
received. Thus, for each ACK arriving at host A, two new packets
are sent, except when cwnd increases due to congestion avoidance,
in which case three new packets are sent.

With an ack-every-two-packets policy, cwnd should only increase
one MSS per 2 RTT. However, at the point marked I 1 * l r the window
increases after 7 ACKs have arrived, and then again at l l**tl after
6 more ACKs.

While we do not have space to show the effect, this trace suffered
from repeated timeout retransmissions due to multiple packet
losses during a single RTT.

Trace file demonstrating correct behavior
Made using the same host and tracing setup as above, except now
A ' s TCP has been modified to remove the MSS/8 additive constant.
Tcpdump reported 77 packet drops; the excerpt below is fully
self-consistent so it is unlikely that any of these occurred
during the excerpt.

We again begin when cwnd is 31 packets (this occurs significantly
later in the trace, because the congestion avoidance is now less
aggressive with opening the window).

14:22:21.236757 B > A : .
14:22:21.238192 A > B: .
14:22:21.238770 A > B: .
14:22:21.238821 B > A: .
14:22:21.240158 A > B: .
14:22:21.240738 A > B: .
14:22:21.270422 B > A: .
14:22:21.271883 A > B: .
14:22:21.272458 A > B: .
14:22:21.279099 B > A: .
14:22:21.280539 A > B: .
14:22:21.281118 A > B: .
14:22:21.281183 B > A: .
14:22:21.282348 A > B: .
14:22:21.283029 A > B: .
14:22:21.283089 B > A: .
14:22:21.284213 A > B: .
14:22:21.284779 A > B: .
14:22:21.285976 B > A: .
14:22:21.287465 A > B: .

ack 5194679
5319727~5324039 (4312)
5324039 :5328351(4312)
ack 5203303
5328351:5332663 (4312)
5332663 : 5336975 (4312)
ack 5211927
5336975:5341287 (4312)
5341287:5345599 (4312)
ack 5220551
5345599: 5349911 (4312)
5349911 :5354223 (4312)
ack 5229175
5354223 :5358535 (4312)
5358535:5362847(4312)
ack 5237799
5362847 : 5367159 (4312)
5367159 :5371471(4312)
ack 5246423
5371471:5375783 (4312)

Paxson, et. al. Informational [Page 201

RFC 2525 TCP Implementation Problems March 1 9 9 9

14 :22 :21 .288036 A > B: .
14:22:21.288073 B > A: .
14 :22 :21 .289155 A > B: .
14 :22 :21 .289725 A > B: .
14:22:21.289762 B > A: .
14 :22 :21 .291090 A > B: .
14 :22 :21 .291662 A > B: .
1 4 : 2 2 : 2 1 . 2 9 1 7 0 1 B > A: .
14 :22 :21 .292870 A > B: .
14 :22 :21 .293441 A B: .
1 4 : 2 2 : 2 1 . 2 9 3 4 8 1 B > A: .
14 :22 :21 .294476 A > B: .
14 :22 :21 .295053 A > B: .
14 :22 :21 .295106 B > A: .
14:22:21.296306 A > B: .
1 4 : 2 2 : 2 1 . 2 9 6 8 7 8 A > B: .
14 :22 :21 .296917 B > A: .
14 :22 :21 .297716 A > B: .
14 :22 :21 .298285 A > B: .
14 :22 :21 .298324 B > A: .
14 :22 :21 .299413 A > B: .
14:22:21.299986 A > B: .
14:22:21.303696 B > A: .
14 :22 :21 .305177 A > B: .
1 4 : 2 2 : 2 1 . 3 0 5 7 5 5 A > B: .
14 :22 :21 .308032 B > A: .
14 :22 :21 .309525 A B: .
14:22:21.310101 A > B: .
14 :22 :21 .310144 B > A: .
14 :22 :21 .311615 A > B: .
14 :22 :21 .312198 A > B: .
14 :22 :21 .341876 B > A: .
1 4 : 2 2 : 2 1 . 3 4 3 4 5 1 A > B: .
14 :22 :21 .343985 A > B: .
14:22:21.350304 B > A: .
14 :22 :21 .351852 A > B: .
14:22:21.352430 A > B: .
14 :22 :21 .352484 B > A: .
14:22:21.353574 A > B : .
14 :22 :21 .354149 A > B: .
14 :22 :21 .354205 B > A: .
14 :22 :21 .355467 A > B: .
14 :22 :21 .356039 A > B : .
1 4 : 2 2 : 2 1 . 3 5 7 3 6 1 B > A: .
14:22:21.358855 A > B: .
14 :22 :21 .359424 A > B: .
14 :22 :21 .359465 B > A :

5375783 :5380095 (4312)
ack 5255047
5380095 : 5384407 (4312)
5384407:5388719(4312)
ack 5263671
5388719: 5393031 (4312)
5393031:5397343 (4312)
ack 5272295
5397343 :I5401655 (4312)
5401655:5405967 (4312)
ack 5280919
5405967: 5410279 (4312)
5410279: 5414591 (4312)
ack 5289543
5 4 1 4 5 9 1 : 5418903 (4312)
5418903 : 5423215 (4312)
ack 5298167
5423215: 5427527 (4312)
5427527: 5431839 (4312)
ack 5 3 0 6 7 9 1 .
5431839 : 5 4 3 6 1 5 1 (4312)
5436151: 5440463 (4312)
ack 5315415
5440463 : 5444775 (4312)
5444775 : 5449087 (4312)
ack 5324039
5449087:5453399 (4312)
5453399: 5457711 (4312)
ack 5332663 ***

5457711: 5462023 (4312)
5462023 : 5466335 (4312)

5466335: 5470647 (4312)
5470647:5474959 (4312)
ack 5349911
5474959:5479271(4312)
5479271 : 5483583 (4312)
ack 5358535
5483583 :5487895 (4312)
5487895:5492207 (4312)
ack 5367159
5492207:5496519 (4312)
5496519:5500831(4312)
ack 5375783
5 5 0 0 8 3 1 :5505143 (4312)
5505143 :5509455 (4312)
ack 5384407

ack 5341287

Paxson, et. al. Informational [Page 211

RFC 2525 TCP Implementation Problems March 1999

14:22:21.360605 A > B: . 5509455:5513767(4312)
14:22:21.361181 A > B: . 5513767:5518079(4312)
14:22:21.361225 B > A: . ack 5393031
14:22:21.362485 A > B: . 5518079:5522391(4312)
14:22:21.363057 A > B: . 5522391:5526703(4312)
14:22:21.363096 B > A: . ack 5401655
14:22:21.364236 A > B: . 5526703:5531015(4312)
14:22:21.364810 A > B: . 5531015:5535327(4312)
14:22:21.364867 B > A: , ack 5410279
14:22:21.365819 A > B: . 5535327:5539639(4312)
14:22:21.366386 A > B: . 5539639:5543951(4312)
14:22:21.366427 B > A: . ack 5418903
14:22:21.367586 A > B: . 5543951:5548263(4312)
14:22:21.368158 A > B: . 5548263:5552575(4312)
14:22:21.368199 B > A: . ack 5427527
14:22:21.369189 A > B: . 5552575:5556887(4312)
14:22:21.369758 A > B: . 5556887:5561199(4312)
14:22:21.370814 A > B: . 5561199:5565511(4312)
14:22:21.371398 A > B: . 5565511:5569823(4312)
14:22:21.376658 A > B: . 5569823:5574135(4312)
14:22:21.377235 A > B: . 5574135:5578447(4312)

14:22:21.380802 A > B: . 5578447:5582759(4312)
14:22:21.381377 A > B: . 5582759:5587071(4312)
14:22:21.381947 A > B: . 5587071:5591383(4312) ****

14:22:21.369803 B > A: . ack 5436151

14:22:21.375159 B > A : . ack 5444775

14:22:21.379303 B > A: . ack 5453399

tr****rc marks the end of the first round trip. Note that cwnd did
not increase (as evidenced by each ACK eliciting two new data
packets). Only at r l * * * * I 1 , which comes near the end of the second
round trip, does cwnd increase by one packet.

This trace did not suffer any timeout retransmissions. It
transferred the same amount of data as the first trace in about
half as much time. This difference is repeatable between hosts A
and B.

References
[Stevens941 and [Wright951 discuss this problem. The problem of
Reno TCP failing to recover from multiple losses except via a
retransmission timeout is discussed in [Fa1196,Hoe96].

Paxson, et. al. Informational [Page 221

RFC 2525 TCP Implementation Problems March 1999

How to detect
If source code is available, that is generally the easiest way to
detect this problem. Search for each modification to the cwnd
variable; (at least) one of these will be for congestion
avoidance, and inspection of the related code should immediately
identify the problem if present.

The problem can also be detected by closely examining packet
traces taken near the sender. During congestion avoidance, cwnd
will increase by an additional segment upon the receipt of
(typically) eight acknowledgements without a loss . This increase
is in addition to the one segment increase per round trip time (or
two round trip times if the receiver is using delayed ACKs).

Furthermore, graphs of the sequence number vs. time, taken from
packet traces, are normally linear during congestion avoidance.
When viewing packet traces of transfers from senders exhibiting
this problem, the graphs appear quadratic instead of linear.

Finally, the traces will show that, with sufficiently large
windows, nearly every loss event results in a timeout.

How to fix
This problem may be corrected by removing the MSS/8" term from
the congestion avoidance code that increases cwnd each time an ACK
of new data is received.

2 . 7 .

Name of Problem
Initial RTO too low

Classification
Performance

Description
When a TCP first begins transmitting data, it lacks the RTT
measurements necessary to have computed an adaptive retransmission
timeout (RTO). RFC 1122, 4.2.3.1, states that a TCP SHOULD
initialize RTO to 3 seconds. A TCP that uses a lower value
exhibits "Initial RTO too low1'.

Significance
In environments with large RTTs (where "largetf means any value
larger than the initial RTO), TCPs will experience very poor
performance.

Paxson, et. al. Informational [Page 231

RFC 2525 TCP Implementation Problems March 1999

Implications
Whenever RTO e RTT, very poor performance can result as packets
are unnecessarily retransmitted (because RTO will expire before an
ACK for the packet can arrive) and the connection enters slow
start and congestion avoidance. Generally, the algorithms for
computing RTO avoid this problem by adding a positive term to the
estimated RTT. However, when a connection first begins it must
use some estimate for RTO, and if it picks a value less than RTT,
the above problems will arise.

Furthermore, when the initial RTO c RTT, it can take a long time
for the TCP to correct the problem by adapting the RTT estimate,
because the use of Karn's algorithm (mandated by RFC 1122,
4.2.3.1) will discard many of the candidate RTT measurements made
after the first timeout, since they will be measurements of
retransmitted segments.

Relevant RFCs
RFC 1122 states that TCPs SHOULD initialize RTO to 3 seconds and
MUST implement Karn's algorithm.

Trace file demonstrating it
The following trace file was taken using tcpdump at host A, the
data sender. The advertised window and SYN options have been
omitted for clarity.

07:52:39.870301 A > B: S 2 7 8 6 3 3 3 6 9 6 : 2 7 8 6 3 3 3 6 9 6 (0)
07:52:40.548170 B > A: S 130240000:130240000(0) ack 2786333697
07:52:40.561287 A > B: P 1:513(512) ack 1
07:52:40.753466 A > B: . 1:513(512) ack 1
07:52:41.133687 A > B: . 1:513(512) ack 1
07:52:41.458529 B > A: . ack 513
07:52:41.458686 A > B: . 513:1025(512) ack 1
07:52:41.458797 A > B: P 1025:1537(512) ack 1
07:52:41.541633 B > A: . ack 513
07:52:41.703732 A > B: . 513:1025(512) ack 1
07:52:42.044875 B > A: . ack 513
07:52:42.173728 A > B: . 513:1025(512) ack 1
07:52:42.330861 B > A: . ack 1537
07:52:42.331129 A > B: . 1537:2049(512) ack 1
07:52:42.331262 A > B: P 2049:2561(512) ack 1
07:52:42.623673 A > B: . 1537:2049(512) ack 1
07:52:42.683203 B > A: . ack 1537
07:52:43.044029 B > A: . ack 1537
07:52:43.193812 A > B: . 1537:2049(512) ack 1

Paxson, et. al. Informational [Page 241

RFC 2525 TCP Implementation Problems March 1999

Note from the SYN/SYN-ACK exchange, the RTT is over 600 msec.
However, from the elapsed time between the third and fourth lines
(the first packet being sent and then retransmitted), it is
apparent the RTO was initialized to under 200 msec. The next line
shows that t h i s value has doubled to 400 msec (correct exponential
backoff of RTO), but that still does not suffice to avoid an
unnecessary retransmission.

Finally,.an ACK from B arrives for the first segment. Later two
more duplicate ACKs for 513 arrive, indicating that both the
original and the two retransmissions arrived at B. (Indeed, a
concurrent trace at B showed that no packets were lost during the
entire connection). This ACK opens the congestion window to two
packets, which are sent back-to-back, but at 07:52:41.703732 RTO
again expires after a little over 200 msec, leading to an
unnecessary retransmission, and the pattern repeats. By the end
of the trace excerpt above, 1536 bytes have been successfully
transmitted from A to B, over an interval of more than 2 seconds,
reflecting terrible performance.

Trace file demonstrating correct behavior
The following trace file was taken using tcpdump at host C, the
data sender. The advertised window and SYN options have been
omitted for clarity.

17:30:32.090299 C > D: S 2031744000 :2031744000(0)
17:30:32.900325 D > C: S 262737964:262737964(0) ack 2031744001
17:30:32.900326 C > D: . ack 1
17:30:32.910326 C > D: . 1:513(512) ack 1
17:30:34.150355 D > C: . ack 513
17:30:34.150356 C > D: . 513:1025(512) ack 1
17:30:34.150357 C > D: . 1025:1537(512) ack 1
17:30:35.170384 D > C: . ack 1025
17:30:35.170385 C > D: . 1537:2049(512) ack 1
17:30:35.170386 C > D: . 2049:2561(512) ack 1
17:30:35.320385 D > C: . ack 1537
17:30:35.320386 C > D: . 2561:3073(512) ack 1
17:30:35.320387 C > D: . 3073:3585(512) ack 1
17:30:35.730384 D > C: . ack 2049

The initial SYN/SYN-ACK exchange shows that RTT is more than 800
msec, and for some subsequent packets it rises above 1 second, but
C's retransmit timer does not ever expire.

References
This problem is documented in EPaxson971.

Paxson, et. al. Informational [Page 251

RFC 2525 TCP Implementation Problems March 1999

2 .

How to detect
This problem is readily detected by inspecting a packet trace of
the startup of a TCP connection made over a long-delay path. It
can be diagnosed from either a sender-side or receiver-side trace.
Long-delay paths can often be found by locating remote sites on
other continents.

How to fix
As this problem arises from a faulty initialization, one hopes
fixing it requires a one-line change to the TCP source code.

8 .

Name of Problem
Failure of window deflation after loss recovery

Classification
Congestion control / performance

Description
The fast recovery algorithm allows TCP senders to continue to
transmit new segments during loss recovery. First, fast
retransmission is initiated after a TCP sender receives three
duplicate ACKs. At this point, a retransmission is sent and cwnd
is halved. The fast recovery algorithm then allows additional
segments to be sent when sufficient additional duplicate ACKs
arrive. Some implementations of fast recovery compute when to
send additional segments by artificially incrementing cwnd, first
by three segments to account for the three duplicate ACKs that
triggered fast retransmission, and subsequently by 1 MSS for each
new duplicate ACK that arrives. When cwnd allows, the sender
transmits new data segments.

When an ACK arrives that covers new data, cwnd is to be reduced by
the amount by which it was artificially increased. However, some
TCP implementations fail to "deflate" the window, causing an
inappropriate amount of data to be sent into the network after
recovery. One cause of this problem is the '!header prediction"
code, which is used to handle incoming segments that require
little work. In some implementations of TCP, the header
prediction code does not check to make sure cwnd has not been
artificially inflated, and therefore does not reduce the
artificially increased cwnd when appropriate.

Significance
TCP senders that exhibit this problem will transmit a burst of
data immediately after recovery, which can degrade performance, as
well as network stability. Effectively, the sender does not

Paxson, et. al. Informational [Page 261

RFC 2525 TCP Implementation Problems March 1999

reduce the size of cwnd as much as it should (to half its value
when loss was detected), if at all. This can harm the performance
of the TCP connection itself, as well as competing TCP flows.

Implications
A TCP sender exhibiting this problem does not reduce cwnd
appropriately in times of congestion, and therefore may contribute
to congestive collapse.

Relevant RFCs
RFC 2001 outlines the fast retransmit/fast recovery algorithms.
[Brakmo95] outlines this implementation problem and offers a fix.

Trace file demonstrating it
The following trace file was taken using tcpdump at host A, the
data sender. The advertised window (which never changed) has been
omitted for clarity, except for the first packet sent by each
host.

08:22:56.825635
08 : 22 : 57.038794
08:22:57.039279
08:22:57.321876
08:22:57.322356
08:22:57.347128
08:22:57.347572
08:22:57,347782
08:22:57.936393
08:22:57.936864
08:22:57.950802
08:22:57.951246
08:22:58.169422
08 :22 : 58.638222
08:22:58.643312
08:22:58.643669
08:22:58.936436
08:22:59.002614
08:22:59.003026
08:22:59.682902
08:22:59.683391
08:22:59.683748
08:22:59.684043
08:22:59.684266
08:22:59.684567
08:22:59.684810
08:22:59,685094

A.7505 > B.7505:
B.7505 > A.7505:
A.7505 B.7505:
B.7505 > 8.7505:
A.7505 > B.7505:
B.7505 > A.7505:
A.7505 > B.7505:
A.7505 > B.7505:
B.7505 > A.7505:
A.7505 > B.7505:
B.7505 > A.7505:
A.7505 > B.7505:
B.7505 > A.7505:
B.7505 > A.7505:
B.7505 > A.7505:
A.7505 > B.7505:
B.7505 > A.7505:
B.7505 > A.7505:
A.7505 > B.7505:
B.7505 > A.7505:
A.7505 > B.7505:
A.7505 > B.7505:
A.7505 > B.7505:
A.7505 > B.7505:
A.7505 > B.7505:
A.7505 > B.7505:
A.7505 > B.7505:

. 29697:30209 (512) ack

. ack 27649 win 4096

. 30209 :30721(512) ack

. ack 28161

. 30721:31233 (512) ack . ack 28673

. 31233 :31745 (512) ack

. 31745:32257 (512) ack

. ack 29185

. 32257:32769 (512) ack

. ack 29697 win 4096

. 32769 : 33281 (512) ack

. ack 29697
ack 29697

. ack 29697

. 29697:30209 (512) ack

. ack 29697

. ack 29697

. 33281:33793 (512) ack

. ack 33281
P 33793 :34305 (512) ack
P 34305: 34817 (512) ack
P 34817:35329 (512) ack
P 35329 : 35841 (512) ack
P 35841:36353 (512) ack
P 36353 :36865 (512) ack
P 36865:37377(512) ack

1 win 4608

1

1

1
1

1

1

1

1

1
1 ***
1
1
1
1
1

Paxson, et. al. Informational [Page 271

RFC 2525 TCP Implementation Problems March 1999

The first 12 lines of the trace show incoming ACKs clocking out a
window of data segments. At this point in the transfer, cwnd is 7
segments. The next 4 lines of the trace show 3 duplicate ACKs
arriving from the receiver, followed by a retransmission from the
sender. At this point, cwnd is halved (to 3 segments) and
artificially incremented by the three duplicate ACKs that have
arrived, making cwnd 6 segments. The next two lines show 2 more
duplicate ACKs arriving, each of which increases cwnd by 1
segment. So, after these two duplicate ACKs arrive the cwnd is 8
segments and the sender has permission to send 1 new segment
(since there are 7 segments outstanding). The next line in the
trace shows this new segment being transmitted. The next packet
shown in the trace is an ACK from host B that covers the first 7
outstanding segments (all but the new segment sent during
recovery). This should cause cwnd to be reduced to 3 segments and
2 segments to be transmitted (since there is already 1 outstanding
segment in the network). However, as shown by the last 7 lines of
the trace, cwnd is not reduced, causing a line-rate burst of 7 new
segments .

Trace file demonstrating correct behavior
The trace would appear identical to the one above, only it would
stop after the line marked because at this point host A
would correctly reduce cwnd after recovery, allowing only 2
segments to be transmitted, rather than producing a burst of 7
segments.

References
This problem is documented and the performance implications
analyzed in CBrakmo951.

How to detect
Failure of window deflation after loss recovery can be found by
examining sender-side packet traces recorded during periods of
moderate loss (so cwnd can grow large enough to allow for fast
recovery when loss occurs).

How to fix
When this bug is caused by incorrect header prediction, the fix is
to add a predicate to the header prediction test that checks to
see whether cwnd is inflated; if so, the header prediction test
fails and the usual ACK processing occurs, which (in this case)
takes care to deflate the window. See EBrakmo951 for details.

2 . 9 .

Name of Problem
Excessively short keepalive connection timeout

Paxson, et. al. Informational [Page 281

RFC 2525 TCP Implementation Problems March 1999

Classification
Reliability

Description
Keep-alive is a mechanism for checking whether an idle connection
is still alive. According to RFC 1122, keepalive should only be
invoked in server applications that might otherwise hang
indefinitely and consume resources unnecessarily if a client
crashes or aborts a connection during a network failure.

RFC 1122 also specifies that if a keep-alive mechanism is
implemented it MUST NOT interpret failure to respond to any
specific probe as a dead connection. The RFC does not specify a
particular mechanism for timing out a connection when no response
is received for keepalive probes. However, if the mechanism does
not allow ample time for recovery from network congestion or
delay, connections may be timed out unnecessarily.

Significance
In congested networks, can lead to unwarranted termination of
connections.

Implications
It is possible for the network connection between two peer
machines to become congested or to exhibit packet loss at the time
that a keep-alive probe is sent on a connection. If the keep-
alive mechanism does not allow sufficient time before dropping
connections in the face of unacknowledged probes, connections may
be dropped even when both peers of a connection are still alive.

Relevant RFCs
RFC 1122 specifies that the keep-alive mechanism may be provided.
It does not specify a mechanism for determining dead connections
when keepalive probes are not acknowledged.

Trace file demonstrating it
Made using the Orchestra tool at the peer of the machine using
keep-alive. After connection establishment, incoming keep-alives
were dropped by Orchestra to simulate a dead connection.

22:11:12.040000 A > B: 22666019:O win 8192 datasz 4 SYN
22:11:12.060000 B > A: 2496001:22666020 win 4096 datasz 4 SYN ACK
22:11:12.130000 A > B: 22666020:2496002 win 8760 datasz 0 ACK
(more than two hours elapse)
00:23:00.680000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
00:23:01.770000 A B: 22666019:2496002 win 8760 datasz 1 ACK
00:23:02.870000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
00:23.03.970000 A > B: 22666019:2496002 win 8760 datasz 1 ACK

Paxson, et. al. Informational [Page 291

RFC 2525 TCP Implementation Problems March 1999

00:23.05.070000 A > B: 22666019:2496002 win 8760 datasz 1 ACK

The initial three packets are the SYN exchange for connection
setup. About two hours later, the keepalive timer fires because
the connection has been idle. Keepalive probes are transmitted a
total of 5 times, with a 1 second spacing between probes, after
which the connection is dropped. This is problematic because a 5
second network outage at the time of the first probe results in
the connection being killed.

Trace file demonstrating correct behavior
Made using the Orchestra tool at the peer of the machine using
keep-alive. After connection establishment, incoming keep-alives
were dropped by Orchestra to simulate a dead connection.

16:01:52.130000 A > B:
16:01:52.360000 B > A:
16:01:52.410000 A > B:
(two hours elapse)
18:01:57.170000 A > B:
18:03:12.220000 A > B:
18:04:27.270000 A > B:
18:05:42.320000 A > B:
18:06:57.370000 A > B:
18:08:12.420000 A > B:
18:09:27.480000 A > B:
18:10:43.290000 A > B:
18:11:57.580000 A > B:
18:13:12.630000 A > B:

1804412929:O win 4096 datasz 4 SYN
16512001:1804412930 win 4096 datasz
1804412930:16512002 win 4096 datasz

1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096
1804412929:16512002 win 4096

datasz
datasz
datasz
datasz
datasz
datasz
datasz
datasz
datasz
datasz

4 SYN ACK
0 ACK

0 ACK
0 ACK
0 ACK
0 ACK
0 ACK
0 ACK
0 ACK
0 ACK
0 ACK
0 RST ACK

In this trace, when the keep-alive timer expires, 9 keepalive
probes are sent at 75 second intervals. 75 seconds after the last
probe is sent, a final RST segment is sent indicating that the
connection has been closed. This implementation waits about 11
minutes before timing out the connection, while the first
implementation shown allows only 5 seconds.

References
This problem is documented in [Dawson97].

How to detect
For implementations manifesting this problem, it shows up on a
packet trace after the keepalive timer fires if the peer machine
receiving the keepalive does not respond. Usually the keepalive
timer will fire at least two hours after keepalive is turned on,
but it may be sooner if the timer value has been configured lower,
or if the keepalive mechanism violates the specification (see
Insufficient interval between keepalives problem). In this

Paxson, et. al. Informational [Page 301

RPC 2525 TCP Implementation Problems March 1999

example, suppressing the response of the peer
was accomplished using the Orchestra toolkit,
configured to drop packets. It could also ha
creating a connection, turning on keepalive,
network connection at the receiver machi

How to fix
This problem can be fixed by using a different method for
out keepalives that allows a longer period of time to elapse
before dropping the connection. For example, the algorithm for
timing out on dropped data could be used. Another possibility is
an algorithm such as the one shown in the trace above, which sends
9 probes at 75 second intervals and then waits an additional 75
seconds for a response before closing the connection.

2.10.

Name of Problem
Failure to back off retransmission timeout

Classification
Congestion control / reliability

Description
The retransmission timeout is used to determine when a packet has
been dropped in the network. When this timeout has expired
without the arrival of an ACK, the segment is retransmitted. Each
time a segment is retransmitted, the timeout is adjusted according
to an exponential backoff algorithm, doubling each time. If a TCP
fails to receive an ACK after numerous attempts at retransmitting
the same segment, it terminates the connection. A TCP that fails
to double its retransmission timeout upon repeated timeouts is
said to exhibit IIFailure to back off retransmission timeoutrt.

Significance
Backing off the retransmission timer is a cornerstone of network
stability in the presence of congestion. Consequently, this bug
can have severe adverse affects in congested networks. It also
affects TCP reliability in congested networks, as discussed in the
next section.

Imp 1 i c a t ions
ible for the network connection between two TCP peers to
gested or to exhibit packet loss at the time that a

retransmission is sent on a connection. If the retransmission
mechanism does not allow sufficient time before dropping

Paxson, et. al. Informational [Page 311

RFC 2525 TCP Implementation Problems March 1999

connections in the face of unacknowledged segments, connections
may be dropped even when, by waiting longer, the connection could
have continued.

Relevant RFCs
RFC 1122 specifies mandatory exponential backoff of the
retransmission timeout, and the termination of connections after
some period of time (at least 100 seconds).

Trace file demonstrating it
Made using tcpdump on an intermediate host:

16:51:12.671727 A > B: S 510878852:510878852(0) win 16384
16:51:12.672479 B > A: S 2392143687 :2392143687(0)

16:51:12.672581 A > B: ack 1 win 16384
16:51:15.244171 A > B: P 1:3(2) ack 1 win 16384
16:51:15.244933 B > A: . ack 3 win 17518 (DF)

ack 510878853 win 16384

<receiving host disconnected>

16:51:19.381176 A > B: P 3:5(2) ack 1 win
16:51:20.162016 A > B: P 3:5(2) ack 1 win
16:51:21.161936 A > B: P 3:5(2) ack 1 win
16:51:22.161914 A > B: P 3:5(2) ack 1 win
16:51:23.161914 A > B: P 3:5(2) ack 1 win
16:51:24.161879 A > B: P 3:5(2) ack 1 win
16:51:25.161857 A > B: P 3:5(2) ack 1 win
16:51:26.161836 A > B: P 3:5(2) ack 1 win
16:51:27.161814 A > B: P 3:5(2) ack 1 win
16:51:28.161791 A > B: P 3:5(2) ack 1 win
16:51:29.161769 A > B: P 3:5(2) ack 1 win
16:51:30.161750 A > B: P 3:5(2) ack 1 win
16:51:31.161727 A > B: P 3:5(2) ack 1 win

16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384

16:51:32.161701 A > B: R 5:5(0) ack 1 win 16384

The initial three packets are the SYN exchange for connection
setup, then a single data packet, to verify that data can be
transferred. Then the connection to the destination host was
disconnected, and more data sent. Retransmissions occur every
second for 12 seconds, and then the connection is terminated with
a RST. This is problematic because a 12 second pause in
connectivity could result in the termination of a connection.

Trace file demonstrating correct behavior
Again, a tcpdump taken from a third host:

Paxson, et. al. Informational [Page 323

RFC 2525 TCP Implementation Problems March 1999

16:59:05.398301 A > B: S 2503324757:2503324757(0) win 16384
16:59:05.399673 B > A: S 2492674648 :2492674648(0)

16:59:05.399866 A > B: . ack 1 win 17520
16:59:06.538107 A > B: P 1:3(2) ack 1 win 17520
16:59:06.540977 B > A: . ack 3 win 17518 (DF)

ack 2503324758 win 16384

creceiving host disconnected>

16:59:13.121542 A > B: P 3:5(2) ack 1 win 17520
16:59:14.010928 A > B: P 3:5(2) ack 1 win 17520
16:59:16.010979 A > B: P 3:5(2) ack 1 win 17520
16:59:20.011229 A > B: P 3:5(2) ack 1 win 17520
16:59:28.011896 A > B: P 3:5(2) ack 1 win 17520
16:59:44.013200 A > B: P 3:5(2) ack 1 win 17520
17:00:16.015766 A > B: P 3:5(2) ack 1 win 17520
17:01:20.021308 A > B: P 3:5(2) ack 1 win 17520
17:02:24.027752 A > B: P 3:5(2) ack 1 win 17520
17:03:28.034569 A > B: P 3:5(2) ack 1 win 17520
17:04:32.041567 A > B: P 3:5(2) ack 1 win 17520
17:05:36.048264 A > B: P 3:5(2) ack 1 win 17520
17:06:40.054900 A > B: P 3:5(2) ack 1 win 17520

17:07:44.061306 A > B: R 5 : 5 (0) ack 1 win 17520

In this trace, when the retransmission timer expires, 12
retransmissions are sent at exponentially-increasing intervals,
until the interval value reaches 64 seconds, at which time the
interval stops growing. 64 seconds after the last retransmission,
a final RST segment is sent indicating that the connection has
been closed. This implementation waits about 9 minutes before
timing out the connection, while the first implementation shown
allows only 12 seconds.

References
None known.

How to detect
A simple transfer can be easily interrupted by disconnecting the
receiving host from the network. tcpdump or another appropriate
tool should show the retransmissions being sent. Several trials
in a low-rtt environment may be required to demonstrate the bug.

How to fix
For one of the implementations studied, this problem seemed to be
the result of an error introduced with the addition of the
Brakmo-Peterson RTO algorithm CBrakmo951, which can return a value
of zero where the older Jacobson algorithm always returns a

Paxson, et. al. Informational [Page 331

RFC 2525 TCP Implementation Problems March 1999

positive value. Brakmo and Peterson specified an additional step
of min(rtt + 2, RTO) to avoid problems with this. Unfortunately,
in the implementation this step was omitted when calculating the
exponential backoff for the RTO. This results in an RTO of 0
seconds being multiplied by the backoff, yielding again zero, and
then being subjected to a later MAX operation that increases it to
1 second, regardless of the backoff factor.

A similar TCP persist failure has the same cause.

2.11.

Name of Problem
Insufficient interval between keepalives

Classification
Reliability

Description
Keep-alive is a mechanism for checking whether an idle connection
is still alive. According to RFC 1122, keep-alive may be included
in an implementation. If it is included, the interval between
keep-alive packets MUST be configurable, and MUST default to no
less than two hours.

Significance
In congested networks, can lead to unwarranted termination of
connections.

Implications
According to RFC 1122, keep-alive is not required of
implementations because it could: (1) cause perfectly good
connections to break during transient Internet failures; (2)
consume unnecessary bandwidth (!'if no one is using the connection,
who cares if it is still good?I1); and (3) cost money for an
Internet path that charges for packets. Regarding this last
point, we note that in addition the presence of dial-on-demand
links in the route can greatly magnify the cost penalty of excess
keepalives, potentially forcing a full-time connection on a link
that would otherwise only be connected a few minutes a day.

If keepalive is provided the RFC states that the required inter-
keepalive distance MUST default to no less than two hours. If it
does not, the probability of connections breaking increases, the
bandwidth used due to keepalives increases, and cost increases
over paths which charge per packet.

Paxson, et. al. Informational [Page 341

RFC 2525 TCP Implementation Problems March 1999

Re levant R F C s
RFC 1122 specifies that the keep-alive mechanism may be provided.
It also specifies the two hour minimum for the default interval
between keepalive probes.

Trace file demonstrating it
Made using the Orchestra tool at the peer of the machine using
keep-alive. Machine A was configured to use default settings for
the keepalive timer.

11:36:32.910000 A > B: 3288354305:O win 28672 datasz 4 SYN
11:36:32.930000 B > A: 896001:3288354306 win 4096 datasz 4 SYN ACK
11:36:32.950000 A > B: 3288354306:896002 win 28672 datasz 0 ACK

11:50:01.190000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
11:50:01.210000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

12:03:29.410000 A > B : 3288354305:896002 win 28672 datasz 0 ACK
12:03:29.430000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

12:16:57.630000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
12:16:57.650000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

12:30:25.850000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
12:30:25.870000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

12:43:54.070000 A > €3: 3288354305:896002 win 28672 datasz 0 ACK
12:43:54.090000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

The initial three packets are the SYN exchange for connection
setup. About 13 minutes later, the keepalive timer fires because
the connection is idle. The keepalive is acknowledged, and the
timer fires again in about 13 more minutes. This behavior
continues indefinitely until the connection is closed, and is a
violation of the specification.

Trace file demonstrating correct behavior
Made using the Orchestra tool at the peer of the machine using
keep-alive. Machine A was configured to use default settings for
the keepalive timer.

17:37:2’0.500000 A > B: 34155521:O win 4096 datasz 4 SYN
17:37:20.520000 B > A: 6272001:34155522 win 4096 datasz 4 SYN ACK
17:37:20.540000 A > B: 34155522:6272002 win 4096 datasz 0 ACK

19:37:25.430000 A > B : 34155521:6272002 win 4096 datasz 0 ACK
19:37:25.450000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

Paxson, et. al. Informational [Page 351

RFC 2525 TCP Implementation Problems March 1999

21:37:30.560000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
21:37:30.570000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

23:37:35.580000 A > 8: 34155521:6272002 win 4096 datasz 0 ACK
23:37:35.600000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

01:37:40.620000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
01:37:40.640000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

03:37:45.590000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
03:37:45.610000 B A: 6272002:34155522 win 4096 datasz 0 ACK

The initial three packets are the SYN exchange for connection
setup. Just over two hours later, the keepalive timer fires
because the connection is idle. The keepalive is acknowledged,
and the timer fires again just over two hours later. This
behavior continues indefinitely until the connection is closed.

References
This problem is documented in [Dawson971.

How to detect
For implementations manifesting this problem, it shows up on a
packet trace. If the connection is left idle, the keepalive
probes will arrive closer together than the two hour minimum.

2.12.

Name of Problem
Window probe deadlock

Classification
Reliability

Description
When an application reads a single byte from a full window, the
window should not be updated, in order to avoid Silly Window
Syndrome (SWS; see [RFC813]). If the remote peer uses a single
byte of data to probe the window, that byte can be accepted into
the buffer. In some implementations, at this point a negative
argument to a signed comparison causes all further new data to be
considered outside the window; consequently, it is discarded
(after sending an ACK to resynchronize). These discards include
the ACKs for the data packets sent by the local TCP, so the TCP
will consider the data unacknowledged.

Paxson, et. al. Informational [Page 361

RFC 2525 TCP Implementation Problems March 1999

Consequently, the application may be unable t
new data to the remote peer, because it has e
buffer available to its local TCP, and buffer
freed because incoming ACKs that would do so
If the application does not read any more data, which may happen
due to its failure to complete such sends, then deadlock results.

It’s relatively rare for applications to use TCP in a manner that
can exercise this problem. Most applications only transmit bulk
data if they know the other end is prepared to receive the data.
However, if a client fails to consume data, putting the server in
persist mode, and then consumes a small amount of data, it can
mistakenly compute a negative window. At this point the client
will discard all further packets from the server, including ACKs
of the clientrs own data, since they are not inside the
(impossibly-sized) window. If subsequently the client consumes
enough data to then send a window update to the server, the
situation will be rectified. That is, this situation can only
happen if the client consumes 1 < N e MSS bytes, so as not to
cause a window update, and then starts its own transmission
towards the server of more than a window’s worth of data.

Significance

Implications
TCP connections will hang and

Relevant RFCs
RFC 793 describes zero window
Window Syndrome.

eventually time out.

probing. RFC 813 describes Silly

Trace file demonstrating it
Trace made from a version of tcpdump modified to print out the
sequence number attached to an ACK even if it’s dataless. An
unmodified tcpdump would not print seq:seq(O); however, for this
bug, the sequence number in the ACK is important for unambiguously
determining how the TCP is behaving.

[Normal connection startup and data transmission from B to A.
Options, including MSS of 16344 in both directions, omitted
for clarity. 1

16:07:32.327616-A > B: S 65360807:65360807(0) win 8192
16:07:32.327304 B > A: S 65488807:65488807(0) ack 65360808 win 57344
16:07:32.327425 A > B: . 1:1(0) ack 1 win 57344
16:07:32.345732 B > A: P 1:2049(2048) ack 1 win 57344
16:07:32.347013 B > A: P 2049:16385(14336) ack 1 win 57344
16:07:32.347550 B > A: P 16385:30721(14336) ack 1 win 57344
16:07:32.348683 B > A: P 30721:45057(14336) ack 1 win 57344
16:07:32.467286 A > B: . 1:1(0) ack 45057 win 12288

Paxson, et. al. Informational [Page 371

RFC 2525 TCP Implementation Problems March 1999

16:07:32.467854 B > A: P 45057:57345(12288) ack 1 win 57344

[B fills up A ' s offered window 1
16:07:32.667276 A > B: . 1:1(0) ack 57345 win 0
E B probes A ' s window with a single byte I
16:07:37.467438 B > A: . 57345:57346(1) ack 1 win 57344
[A resynchronizes without accepting the byte 1
16:07:37.467678 A > B: . 1:1(0) ack 57345 win 0
[B probes A ' s window again I
16:07:45.467438 B > A: . 57345:57346(1) ack 1 win 57344
[A resynchronizes and accepts the byte (per the ack field) 3
16:07:45.667250 A > B: . 1:1(0) ack 57346 win 0
[The application on A has started generating data. The first

16:07:51.358459 A > B: P 1:2049(2048) ack 57346 win 0
packet A sends is small due to a memory allocation bug. 1

[B acks A ' s first packet 1
16:07:51.467239 B > A: . 57346:57346(0) ack 2049 win 57344

[This looks as though A accepted B ' s ACK and is sending
another packet in response to it. In fact, A is trying
to resynchronize with B, and happens to have data to send
and can send it because the first small packet didn't use
up cwnd. 3

16:07:51.467698 A > B: . 2049:14337(12288) ack 57346 win 0
[B acks all of the data that A has sent I
16:07:51.667283 B > A: . 57346:57346(0) ack 14337 win 57344
[A tries to resynchronize. Notice that by the packets
seen on the network, A and B *are* in fact synchronized;
A only thinks that they aren't. I

16:07:51.667477 A > B: . 14337:14337(0) ack 57346 win 0
[A ' s retransmit timer fires, and B acks all of the data.

16:07:52.467682 A > B: . 1:14337(14336) ack 57346 win 0
16:07:52.468166 B > A: . 57346:57346(0) ack 14337 win 57344
16:07:52.468248 A > B: . 14337:14337(0) ack 57346 win 0

A once again tries to resynchronize. I

[A ' s retransmit timer fires again, and B acks all of the data.

16:07:55.467684 A > 3: . 1:14337(14336) ack 57346 win 0
A once again tries to resynchronize. I

Paxson, et. al. Informational [Page 381

RFC 2525 TCP Implementation Problems March 1999

16:07:55.468172 B > A: . 57346:57346(0) ack 14337 win 57344
16:07:55.468254 A > B: . 14337:14337(0) ack 57346 win 0
Trace file demonstrating correct behavior

Made between the same two hosts after applying the bug fix
mentioned below (and using the same modified tcpdump).

[Connection starts up with data transmission from B to A.
Note that due to a separate bug (the fact that A and B
are communicating over a loopback driver), B erroneously
skips slow start. 3

17:38:09.510854 A > B: S 3110066585:3110066585(0) win 16384
17:38:09.510926 B A: S 3110174850 :3110174850(0)

ack 3110066586 win 57344
17:38:09.510953 A > B: . 1:1(0) ack 1 win 57344
17:38:09.512956 B > A: P 1:2049(2048) ack 1 win 57344
17:38:09.513222 B > A: P 2049:16385(14336) ack 1 win 57344
17:38:09.513428 B > A: P 16385:30721(14336) ack 1 win 57344
17:38:09.513638 B > A: P 30721:45057(14336) ack 1 win 57344
17:38:09.519531 A > B: . 1:1(0) ack 45057 win 12288
17:38:09.519638 B > A: P 45057:57345(12288) ack 1 win 57344

[B fills up A ' s offered window I
17:38:09.719526 A > B: . 1:1(0) ack 57345 win 0
[B probes A ' s window with a single byte. A resynchronizes

17:38:14.499661 B > A: , 57345:57346(1) ack 1 win 57344
17:38:14.499724 A > B: . 1:1(0) ack 57345 win 0
without accepting the byte 1

[B probes A ' s window again. A resynchronizes and accepts

17:38:19.499764 B > A: . 57345:57346(1) ack 1 win 57344
17:38:19.519731 A > B: . 1:1(0) ack 57346 win 0
the byte, as indicated by the ack field 3

[B probes A ' s window with a single byte. A resynchronizes

17:38:24.499865 B > A: . 57346:57347(1) ack 1 win 57344
17:38:24.499934 A > B: . 1:1(0) ack 57346 win 0
without accepting the byte 1

[The application on A has started generating data.
B acks A ' s data and A accepts the ACKs and the
data transfer continues 1

17:38:28.530265 A > B: P 1:2049(2048) ack 57346 win 0
17:38:28.719914 B > A: . 57346:57346(0) ack 2049 win 57344
17:38:28.720023 A > B: . 2049:16385(14336) ack 57346 win 0
17:38:28.720089 A > B: . 16385:30721(14336) ack 57346 win 0

Paxson, et. al. Informational [Page 391

RFC 2525 TCP Implementation Problems March 1999

17:38:28.720370 B 1 A: . 57346:57346(0) ack 30721 win 57344
17:38:28.720462 A > B: . 30721:45057(14336) ack 57346 win 0
17:38:28.720526 A B: P 45057:59393(14336) ack 57346 win 0
17:38:28.720824 A > B: P 59393:73729(14336) ack 57346 win 0
17:38:28.721124 B 4 A: . 57346:57346(0) ack 73729 win 47104
17:38:28.721198 A > B: P 73729:88065(14336) ack 57346 win 0
17:38:28.721379 A > B: P 88065:102401(14336) ack 57346 win 0

17:38:28.721557 A > B: P 102401:116737(14336) ack 57346 win 0
17:38:28.721863 B > A: . 57346:57346(0) ack 116737 win 36864
References

None known.

How to detect
Initiate a connection from a client to a server. Have the server
continuously send data until its buffers have been full for long
enough to exhaust the window. Next, have the client read 1 byte
and then delay fo r long enough that the server TCP sends a window
probe. Now have the client start sending data. At this point, if
it ignores the server's ACKs, then the client's TCP suffers from
the problem.

How to fix
In one implementation known to exhibit the problem (derived from
4.3-Reno) , the problem was introduced when the macro MAX() was
replaced by the function call max0 for computing the amount of
space in the receive window:

tp->rcv wnd = max(win, (int) (tp->rcv-adv - tp->rcv nxt) 1 ; - -

When data has been received into a window beyond what has been
advertised to the other side, rcv nxt > rcv adv, making this
negative. It's clear from the (int) cast tEat this is intended,
but the unsigned max() function sign-extends so the negative
number is "larger". The fix is to change max0 to imax0 :

tp->rcv - wnd = imax(win, (int) (tp->rcv - adv - tp->rcv-nxt) f ;

4.3-Tahoe and before did not have this bug, since it used the
macro M A X 0 for this calculation.

2.13.

Name of Problem
Stretch ACK violation

Paxson, et. al. Informational [Page 401

RFC 2525 TCP Implementation Problems March 1999

Classification
Congestion Control/Performance

Description
To improve efficiency (both computer and network) a data receiver
may refrain from sending an ACK for each incoming segment,
according to [RFC1122]. However, an ACK should not be delayed an
inordinate amount of time. Specifically, ACKs SHOULD be sent for
every second full-sized segment that arrives. If a second full-
sized segment does not arrive within a given timeout (of no more
than 0 . 5 seconds), an ACK should be transmitted, according to
CRFC11221. A TCP receiver which does not generate an ACK for
every second full-sized segment exhibits a "Stretch ACK
Violation".

Significance
TCP receivers exhibiting this behavior will cause TCP senders to
generate burstier traffic, which can degrade performance in
congested environments. In addition, generating fewer ACKs
increases the amount of time needed by the slow start algorithm to
open the congestion window to an appropriate point, which
diminishes performance in environments with large bandwidth-delay
products. Finally, generating fewer ACKs may cause needless
retransmission timeouts in lossy environments, as it increases the
possibility that an entire window of ACKs is lost, forcing a
retransmission timeout.

Implications
When not in loss recovery, every ACK received by a TCP sender
triggers the transmission of new data segments. The burst size is
determined by the number of previously unacknowledged segments
each ACK covers. Therefore, a TCP receiver ack'ing more than 2
segments at a time causes the sending TCP to generate a larger
burst of traffic upon receipt of the ACK. This large burst of
traffic can overwhelm an intervening gateway, leading to higher
drop rates for both the connection and other connections passing
through the congested gateway.

In addition, the TCP slow start algorithm increases the congestion
window by 1 segment for each ACK received. Therefore, increasing
the ACK interval (thus decreasing the rate at which ACKs are
transmitted) increases the amount of time it takes slow start to
increase the congestion window to an appropriate operating point,
and the connection consequently suffers from reduced performance.
This is especially true fo r connections using large windows.

Relevant RFCs
RFC 1122 outlines delayed ACKs as a recommended mechanism.

Paxson, et. al. Informational [Page 411

RFC 2525 TCP Implementation Problems March 1999

Trace file demonstrating it
Trace file taken using tcpdump at host B, the data receiver (and
ACK originator). The advertised window (which never changed) and
timestamp options have been omitted for clarity, except for the
first packet sent by A:

12:09:24.820187 A.1174 > B.3999:
win 33580 cnop,nop,timestamp

12:09:24.824147 A.1174 > B.3999:
12:09:24.832034 A.1174 > B.3999:
12:09:24.832222 B.3999 > A.1174:
12:09:24.934837 A.1174 > B.3999:
12:09:24.942721 A.1174 > B.3999:
12:09:24.950605 A.1174 > B.3999:
12:09:24.950797 B.3999 > A.1174:
12:09:24.958488 A.1174 > B.3999:
12:09:25.052330 A.1174 > B.3999:
12:09:25.060216 A.1174 > B.3999:
12:09:25.060405 B.3999 > A.1174:

. 2049:3497(1448) ack 1
2249877 2249914> [tos Ox81
. 3497:4945(1448) ack 1
. 4945:6393(1448) ack 1
. ack 6393
. 6393:7841(1448) ack 1
. 7841:9289(1448) ack 1
. 9289:10737(1448) ack 1
. ack 10737
. 10737:12185(1448) ack 1
. 12185:13633(1448) ack 1
. 13633:15081(1448) ack 1
. ack 15081

This portion of the trace clearly shows that the receiver (host B)
sends an ACK for every third full sized packet received. Further
investigation of this implementation found that the cause of the
increased ACK interval was the TCP options being used. The
implementation sent an ACK after it was holding 2*MSS worth of
unacknowledged data. In the above case, the MSS is 1460 bytes so
the receiver transmits an ACK after it is holding at least 2920
bytes of unacknowledged data. However, the length of the TCP
options being used LRFC13231 took 12 bytes away from the data
portion of each packet. This produced packets containing 1448
bytes of data. But the additional bytes used by the options in
the header were not taken into account when determining when to
trigger an ACK. Therefore, it took 3 data segments before the
data receiver was holding enough unacknowledged data (>= 2*MSS, or
2920 bytes in the above example) to transmit an ACK.

Trace file demonstrating correct behavior
Trace file taken using tcpdump at host B, the data receiver (and
ACK originator), again with window and timestamp information
omitted except for the first packet:

12:06:53.627320 A.1172 > B.3999: . 1449:2897(1448) ack 1
12:06:53.634773 A.1172 > B.3999: . 2897:4345(1448) ack 1
12:06:53.634961 B.3999 > A.1172: . ack 4345
12:06:53.737326 A.1172 > B.3999: . 4345:5793(1448) ack 1
12:06:53.744401 A.1172 > B.3999: . 5793:7241(1448) ack 1
12:06:53.744592 B.3999 > A.1172: . ack 7241

win 33580 cnop,nop,timestamp 2249575 2249612> [tos Ox81

Paxson, et. al. Informational [Page 421

RFC 2525 TCP Implementation Problems March 1999

2.

12:06:53.752287 A.1172 > B.3999: . 7241:8689(1448) ack 1
12:06:53.847332 A.1172 > B.3999: . 8689:10137(1448) ack 1
12:06:53.847525 B.3999 > A.1172: . ack 10137

This trace shows the TCP receiver (host B) ack'ing every second
full-sized packet, according to [RFC1122]. This is the same
implementation shown above, with slight modifications that allow
the receiver to take the length of the options into account when
deciding when to transmit an ACK.

References
This problem is documented in [Allman971 and [Paxson971.

How to detect
Stretch ACK violations show up immediately in receiver-side packet
traces of bulk transfers, as shown above. However, packet traces
made on the sender side of the TCP connection may lead to
ambiguities when diagnosing this problem due to the possibility of
lost ACKs.

14.

Name of Problem
Retransmission sends multiple packets

Classification
Congestion control

Description
When a TCP retransmits a segment due to a timeout expiration or
beginning a fast retransmission sequence, it should only transmit
a single segment. A TCP that transmits more than one segment
exhibits "Retransmission Sends Multiple Packets".

Instances of this problem have been known to occur due to
miscomputations involving the use of TCP options. TCP options
increase the TCP header beyond its usual size of 20 bytes. The
total size of header must be taken into account when
retransmitting a packet. If a TCP sender does not account fo r the
length of the TCP options when determining how much data to
retransmit, it will send too much data to fit into a single
packet. In this case, the correct retransmission will be followed
by a short segment (tinygram) containing data that may not need to
be retransmitted.

A specific case is a TCP using the RFC 1323 timestamp option,
which adds 12 bytes to the standard 20-byte TCP header. On
retransmission of a packet, the 12 byte option is incorrectly

Paxson, et. al. Informational [Page 431

RFC 2525 TCP Implementation Problems March 1999

interpreted as part of the data portion of the segment. A
standard TCP header and a new 12-byte option is added to the data,
which yields a transmission of 12 bytes more data than contained
in the original segment. This overflow causes a smaller packet,
with 12 data bytes, to be transmitted.

Significance
This problem is somewhat serious for congested environments
because the TCP implementation injects more packets into the
network than is appropriate. However, since a tinygram is only
sent in response to a fast retransmit or a timeout, it does not
effect the sustained sending rate.

Implications
A TCP exhibiting this behavior is stressing the network with more
traffic than appropriate, and stressing routers by increasing the
number of packets they must process. , The redundant tinygram will
also elicit a duplicate ACK from the receiver, resulting in yet
another unnecessary transmission.

Relevant RFCs
RFC 1122 requires use of slow start after loss; RFC 2001
explicates slow start; RFC 1323 describes the timestamp option
that has been observed to lead to some implementations exhibiting
this problem.

Trace file demonstrating it
Made using tcpdump recording at a machine on the same subnet as
Host A. Host A is the sender and Host B is the receiver. The
advertised window and timestamp options have been omitted for
clarity, except for the first segment sent by host A. In
addition, portions of the trace file not pertaining to the packet
in question have been removed (missing packets are denoted by
'I [. . .I in the trace) .

11:55:22.701668 A > B: . 7361:7821(460) ack 1
11:55:22.702109 A B: . 7821:8281(460) ack 1
C.. .I

win 49324 <nop,nop,timestamp 3485348 3485113>

11:55:23.112405 B > A: .
11:55:23.113069 A > B: .
11:55:23.113511 A > B: .
11:55:23.333077 B > A: .
11:55:23.336860 B > A: .
11:55:23.340638 B > A: .
11:55:23.341290 A > B: .
11:55:23.341317 A > B: .

ack 7821
12421: 12881 (460) ack 1
12881: 13341 (460) ack 1
ack 7821
ack 7821
ack 7821
7821 : 8281 (460) ack 1
8281:8293(12) ack 1

Paxson, et. al. Informational [Page 441

RFC 2525 TCP Implementation Problems March 1999

11:55:23.498242 B > A: . ack 7821
11:55:23.506850 B > A: . ack 7821
11:55:23.510630 B > A: . ack 7821

11:55:23.746649 B > A: . ack 10581
The second line of the above trace shows the original transmission
of a segment which is later dropped. After 3 duplicate ACKs, line
9 of the trace shows the dropped packet (7821:8281), with a 460-
byte payload, being retransmitted. Immediately following this
retransmission, a packet with a 12-byte payload is unnecessarily
sent.

Trace file demonstrating correct behavior
The trace file would be identical to the one above, with a single
line :

11:55:23.341317 A > B: . 8281:8293(12) ack 1
omitted.

References
EBrakmo951

How to detect
This problem can be detected by examining a packet trace of the
TCP connections of a machine using TCP options, during which a
packet is retransmitted.

2. 15.

Name of Problem
Failure to send FIN notification promptly

Classification
Performance

Description
When an application closes a connection, the corresponding TCP
should send the FIN notification promptly to its peer (unless
prevented by the congestion window). If a TCP implementation
delays in sending the FIN notification, for example due to waiting
until unacknowledged data has been acknowledged, then it is said
to exhibit "Failure to send FIN notification promptly".

Paxson, et. al. Informational [Page 451

RFC 2525 TCP Implementation Problems March 1999

Also, while not strictly required, FIN segments should include the
PSH flag to ensure expedited delivery of any pending data at the
receiver.

Significance
The greatest impact occurs for short-lived connections, since for
these the additional time required to close the connection
introduces the greatest relative delay.

The additional time can be significant in the common case of the
sender waiting for an ACK that is delayed by the receiver.

Implications
Can diminish total throughput as seen at the application layer,
because connection termination takes longer to complete.

Re levant RFCs
RFC 793 indicates that a receiver should treat an incoming FIN
flag as implying the push function.

Trace file demonstrating it
Made using tcpdump (no losses reported by the packet filter).

10:04:38.68 A > B: S 1031850376:1031850376(0) win 4096
cmss 1460, wscale 0, eol> (DF)

10:04:38.71 B > A: S 596916473:596916473(0) ack 1031850377
win 8760 cmss 1460> (DF)

10:04:38.73 A > B: . ack 1 win 4096 (DF)
10:04:41.98 A > B: P 1:4(3) ack 1 win 4096 (DF)
10:04:42.15 B > A: . ack 4 win 8757 (DF)
10:04:42.23 A > B: P 4:7(3) ack 1 win 4096 (DF)
10:04:42.25 B > A: P 1:11(10) ack 7 win 8754 (DF)
10:04:42.32 A > B: . ack 11 win 4096 (DF)
10:04:42.33 B > A: P 11:51(40) ack 7 win 8754 (DF)
10:04:42.51 A > B: . ack 51 win 4096 (DF)
10:04:42.53 B > A: F 51:51(0) ack 7 win 8754 (DF)
10:04:42.56 A > B: FP 7:7(0) ack 52 win 4096 (DF)
10:04:42.58 B > A: . ack 8 win 8754 (DF)

Machine B in the trace above does not send out a FIN notification
promptly if there is any data outstanding. It instead waits for
all unacknowledged data to be acknowledged before sending the FIN
segment. The connection was closed at 10:04.42.33 after
requesting 40 bytes to be sent. However, the FIN notification
isn't sent until 10:04.42.51, after the (delayed) acknowledgement
of the 40 bytes of data.

Paxson, et. al. Informational [Page 461

RFC 2525 TCP Implementation Problems March 1999

Trace file demonstrating correct behavior

10:27:53.85 C > D: S 419744533:419744533(0) win 4096
emss 1460,wscale O,eol> (DF)

10:27:53.92 D > C: S 10082297:10082297(0) ack 419744534
win 8760 emss 1460> (DF)

10:27:53.95 C > D: . ack 1 win 4096 (DF)
10:27:54.42 C > D: P 1:4(3) ack 1 win 4096 (DF)
10:27:54.62 D > C: . ack 4 win 8757 (DF)
10:27:54.76 C > D: P 4:7(3) ack 1 win 4096 (DF)
10:27:54.89 D > C: P 1:11(10) ack 7 win 8754 (DF)
10:27:54.90 D > C: FP 11:51(40) ack7 win 8754 (DF)
10:27:54.92 C > D: . ack 52 win 4096 (DF)
10:27:55.01 C > D: FP 7:7(0) ack 52 win 4096 (DF)
10:27:55.09 D > C: . ack 8 win 8754 (DF)

Made using tcpdump (no losses reported by the packet filter).

Here, Machine D sends a FIN with 40 bytes of data even before the
original 10 octets have been acknowledged. This is correct
behavior as it provides for the highest performance.

References
This problem is documented in [Dawson97].

How to detect
For implementations manifesting this problem, it shows up on a
packet trace.

2.16.

Name of Problem
Failure to send a RST after Half Duplex Close

Classification
Resource management

Description
RFC 1122 4.2.2.13 states that a TCP SHOULD send a RST if data is
received after "half duplex closeg1, i.e. if it cannot be delivered
to the application. A TCP that fails to do so is said to exhibit
'IFailure to send a RST after Half Duplex Close".

Significance
Potentially serious for TCP endpoints that manage large numbers of
connections, due to exhaustion of memory and/or process slots
available for managing connection state.

Paxson, et. al. Informational [Page 471

RFC 2525 TCP Implementation Problems March 1999

Implications
Failure to send the RST can lead to permanently hung TCP
connections. This problem has been demonstrated when HTTP clients
abort connections, common when users move on to a new page before
the current page has finished downloading. The HTTP client closes
by transmitting a FIN while the server is transmitting images,
text, etc. The server TCP receives the FIN, but its application
does not close the connection until all data has been queued for
transmission. Since the server will not transmit a FIN until all
the preceding data has been transmitted, deadlock results if the
client TCP does not consume the pending data or tear down the
connection: the window decreases to zero, since the client cannot
pass the data to the application, and the server sends probe
segments. The client acknowledges the probe segments with a zero
window. As mandated in RFC1122 4.2.2.17, the probe segments are
transmitted forever. Server connection state remains in
CLOSE - WAIT, and eventually server processes are exhausted.

Note that there are two bugs. First, probe segments should be
ignored if the window can never subsequently increase. Second, a
RST should be sent when data is received after half duplex close.
Fixing the first bug, but not the second, results in the probe
segments eventually timing out the connection, but the server
remains in CLOSE - WAIT for a significant and unnecessary period.

Relevant RFCs
RFC 1122 sections 4.2.2.13 and 4.2.2.17.

Trace file demonstrating it
Made using an unknown network analyzer. No drop information
available.

client.1391 >
server.8080 >
client.1391 >
client.1391 >
server.8080 >
server.8080 >
server. 8080 >
server.8080 >
client.1391 >
server.8080 >
server.8080 >
server.8080 >
server. 8080 >
client.1391 >
server.8080 >
server.8080 >

server.8080:
client.1391:
server.8080:
server.8080:
client.1391:
client.1391:
client.1391:
client.1391:
server. 8080 :
client.1391:
client.1391:
client.1391:
client.1391:
server.8080:
client.1391:
client.1391:

S 0:1(0) ack: 0 win: 2000 cmss: 5b4>
SA 8c01:8c02(0) ack: 1 win: 8000 cmss:100>
PA
PA 1:lc2(lcl) ack: 8c02 win: 2000
[DFI PA 8c02:8cde(dc) ack: lc2 win: 8000
[DFI A 8cde:9292(5b4) ack: lc2 win: 8000
[DFI A 9292:9846(5b4) ack: lc2 win: 8000
[DFI A 9846:9dfa(5b4) ack: lc2 win: 8000
PA
[DFI A 9dfa:a3ae(5b4) ack: le2 win: 8000
[DFI A a3ae:a962(5b4) ack: lc2 win: 8000
[DFI A a962:af16(Sb4) ack: lc2 win: 8000
[DFI A af16:b4ca(5b4) ack: lc2 win: 8000
PA
[DFI A b4ca:ba7e(5b4) ack: lc2 win: 8000
[DFI A b4ca:ba7e(5b4) ack: lc2 win: 8000

Paxson, et. al. Informational [Page 481

RFC 2525 TCP Implementation Problems March 1999

client.1391 > server.8080: PA
server.8080 > client.1391: [DF] A ba7e:bdfa(37c) ack: 1c2 win: 8000
client.1391 > server.8080: PA
server.8080 > client.1391: [DF] A bdfa: dfb(1) ack: lc2 win: 8000
client.1391 > server.8080: PA

[HTTP client aborts and enters FIN - WAIT - 1 I
client.1391 > server.8080: FPA

[server ACKs the FIN and enters CLOSE - WAIT]

server.8080 > client.1391: [DF] A

[client enters FIN-WAIT - 2 1

server.6080 > client.1391: [DF] A bdfa:bdfb(l) ack: lc3 win: 8000

server continues to try to send its data 3

client.1391
server.8080
client.1391
server. 8080
client.1391
server.8080
client.1391
server.8080
client.1391

> server. 8080 :
> client.1391:
> server.8080:
> client.1391:
> server.8080:
> client.1391:
> server.8080:
> client.1391:
> server.8080:

PA e window = 0 >
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000
PA e window = 0 >
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000
PA e window = 0 >
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000
PA e window = 0 >
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000
PA e window = 0 >

[. . . repeat ad exhaustium . . . I
Trace file demonstrating correct behavior

Made using an unknown network analyzer. No drop information
available.

client > server D=80 S=59500 Syn Seq=337 Len=O Win=8760
server > client D=59500 S=80 Syn Ack=338 Seq=80153 Len=O Win=8760
client > server D=80 S=59500 Ack=80154 Seq=338 Len=O Win=8760

[. . . normal data omitted . . . 1
client > server D=80 S=59500 Ack=14559 Seq=596 Len=O Win=8760
server > client D=59500 S=80 Ack=596 Seq=114559 Len=1460 Win=8760

[client closes connection I

client > server D=80 S=59500 Fin Seq=596 Len=O Win=8760

Paxson, et. al. Informational [Page 491

RFC 2525

server >

E client
client >
server >
client >
server >
client >
server >
client >
server >
client >

TCP Implementat Problem Mar 9

client D=59500 S=80 Ack=597 Seq=116

sends RST (RF

server D=
client D=59500 S=8
server D=80 S=59500 Rst
client D=59500 S=8
server D=80 S=59500 Rst
client D=59500 S=80 Ack=
server D=80 S=59500 Rst Seq=597 Len=O Win=O

ltclientll sends a number of RSTs, one in response to each incoming
packet from "server". One might wonder why ffserverlv keeps sending
data packets after it has received a RST from llclientll; the
explanation is that tlserverlt had already transmitted all five of
the data packets before receiving the first RST from rrclientTt, so
it is too late to avoid transmitting them.

How to detect
The problem can be detected by inspecting packet traces of a
large, interrupted bulk transfer.

2.17.

Name of Problem
Failure to RST on close with data pending

Classification
Resource management

Description
When an application closes a connection in such a way that it can
no longer read any received data, the TCP SHOULD, per section
4.2.2.13 of RFC 1122, send a RST if there is any unread received
data, or if any new data is received. A TCP that fails to do so
exhibits "Failure to RST on close with data pending".

Note that, for some TCPs, this

Informational [Page 501

RFC 2525 TCP Implementation Problems March 1999

Significance
This problem is most significant for endpoints that engage in
large numbers of connections, as their ability to do so will be
curtailed as they leak away resources.

Implications
Failure to reset the connection can lead to permanently hung
connections, in which the remote endpoint takes no further action
to tear down the connection because it is waiting on the local TCP
to first take some action. This is particularly the case if the
local TCP also allows the advertised window to go to zero, and
fails to tear down the connection when the remote TCP engages in
llpersistll probes (see example below).

Relevant RFCs
RFC 1122 section 4.2.2.13. Also, 4.2.2.17 for the zero-window
probing discussion below.

Trace file demonstrating it
Made using tcpdump. No drop information available.

13:11:46.04 A > B: S 458659166:458659166(0) win 4096

13:11:46.04 B > A: S 792320000:792320000(0) ack 458659167

13:11:46.04 A > B: . ack 1 win 4096 (DF)
13:11.55.80 A > B: . 1:513(512) ack 1 win 4096 (DF)
13:11.55.80 A > B: . 513:1025(512) ack 1 win 4096 (DF)
13:11:55.83 B > A: . ack 1025 win 3072
13:11.55.84 A > B: . 1025:1537(512) ack 1 win 4096 (DF)
13:11.55.84 A > B: . 1537:2049(512) ack 1 win 4096 (DF)
13:11.55.85 A > B: . 2049:2561(512) ack 1 win 4096 (DF)
13:11:56.03 B > A: . ack 2561 win 1536
13:11.56.05 A > B: . 2561:3073(512) ack 1 win 4096 (DF)
13:11.56.06 A > B: . 3073:3585(512) ack 1 win 4096 (DF)
13:11.56.06 A > B: . 3585:4097(512) ack 1 win 4096 (DF)
13:11:56.23 B > A: . ack 4097 win 0
13:11:58.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
13:11:58.16 B > A: . ack 4097 win 0
13:12:00.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
13:12:00.16 B > A: . ack 4097 win 0
13:12:02.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
13:12:02.16 B > A: . ack 4097 win 0
13:12:05.37 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
13:12:05.37 B > A: . ack 4097 win 0
13:12:06.36 B > A: F 1:1(0) ack 4097 win 0
13:12:06.37 A > B: . ack 2 win 4096 (DF)
13:12:11.78 A > B: . 4096:4097(1) ack 2 win 4096 (DF)

cmss 1460,wscale O,eol> (DF)

win 4096

Paxson, et. al. Informational [Page 511

RFC 2525 TCP Implementation Problems March 1999

13:12:11.78 B > A: . ack 4097 win 0
13:12:24.59 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
13:12:24.60 B > A: . ack 4097 win 0
13:12:50.22 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
13:12:50.22 B > A: . ack 4097 win 0

Machine B in the trace above does not drop received data when the
socket is llclosedll by the application (in this case, the
application process was terminated). This occurred at
approximately 13:12:06.36 and resulted in the FIN being sent in
response to the close. However, because there is no longer an
application to deliver the data to, the TCP should have instead
sent a RST.

Note: Machine A ’ s zero-window probing is also broken.
resending old data, rather than new data. Section 3.7 in RFC 793
and Section 4.2.2.17 in RFC 1122 discuss zero-window probing.

It is

Trace file demonstrating better behavior
Made using tcpdump. No drop information available.

Better, but still not fully correct, behavior, per the discussion
below. We show this behavior because it has been observed for a
number of different TCP implementations.

13:48:29.24 C > D:

13:48:29.24 D > C:

13:48:29.25 C > D:
13:48:30.78 C > D:
13:48:30.79 C > D:
13:48:30.80 D > C:
13:48:32.75 C > D:
13:48:32.82 D > C:
13:48:34.76 C > D:
13:48:34.84 D > C:
13:48:36.34 D > C:
13:48:36.34 C > D:
13:48:36.34 D > C:
13:48:36.34 C > D:
13:48:36.34 D > C:

S 73445554 :73445554 (0) win 4096

S 36050296:36050296(0) ack 73445555

, ack 1 win 4096 (DF)
. 1:1461(1460) ack 1 win 4096 (DF)
. 1461:2921(1460) ack 1 win 4096 (DF)
. ack 2921 win 1176 (DF)
. 2921:4097(1176) ack 1 win 4096 (DF)
. ack 4097 win 0 (DF)
. 4096:4097(1) ack 1 win 4096 (DF) . ack 4097 win 0 (DF)
FP 1:1(0) ack 4097 win 4096 (DF)
. 4097:5557(1460) ack 2 win 4096 (DF)
R 36050298 :36050298 (0) win 24576
. 5557:7017(1460) ack 2 win 4096 (DF)
R 36050298:36050298 (0) win 24576

cmss 1460,wscale O,eol> (DF)

win 4096 cmss 1460,wscale O,eol> (DF)

In this trace, the application process is terminated on Machine D
at approximately 13:48:36.34. Its TCP sends the FIN with the
window opened again (since it discarded the previously received
data). Machine C promptly sends more data, causing Machine D t o

Paxson, et. al. Informational [Page 521

RFC 2525 TCP Implementation Problems March 1999

reset the connection since it cannot deliver the data to the
application. Ideally, Machine D SHOULD send a RST instead of
dropping the data and re-opening the receive window.

Note: Machine C's zero-window probing is broken, the same as in
the example above.

Trace file demonstrating correct behavior
Made using tcpdump. No losses reported by the packet filter.

14:12:02.19 E > F:
14:12:02.19 F > E :

14:12:02.19 E > F:
14:12:10.43 E > F:
14:12:10.61 F > E:
14:12:10.61 E > F:
14:12:10.61 E > F:
14:12:10.81 F > E :
14:12:10.81 E > F:
14:12:10.81 E > F:
14:12:10.81 E > F:
14:12:11.01 F > E:
14:12:11.01 E > F:
14:12:11.01 E > F:
14:12:11.21 F > E :
14:12:15.88 E > F:
14:12:16.06 F > E:
14:12:20.88 E > F:
14:12:20.91 F > E :
14:12:21.94 F > E:

S 1143360000:1143360000(0) win 4096
S 1002988443 :1002988443(0) ack 1143360001

. ack 1 win 4096

. 1 :513 (512) ack 1 win 4096

. ack 513 win 3584 (DF)

. 513:1025(512) ack 1 win 4096

. 1025:1537(5121 ack 1 win 4096

. ack 1537 win 2560 (DF)

. 1537:2049(512) ack 1 win 4096

. 2049:2561(512) ack 1 win 4096

. 2561:3073(512) ack 1 win 4096

. ack 3073 win 1024 (DF)

. 3073:3585(512) ack 1 win 4096

. 3585:4097(512) ack 1 win 4096

. ack 4097 win 0 (DF)

. 4097:4098(1) ack 1 win 4096 . ack 4097 win 0 (DF)

. 4097:4098(1) ack 1 win 4096

. ack 4097 win 0 (DF)
R 1002988444 : 1002988444 (0) win 4096

win 4096 cmss 1460> (DF)

When the application terminates at 14:12:21.94, F immediately
sends a RST.

Note: Machine E ' s zero-window probing is (finally) correct.

How to detect
The problem can often be detected by inspecting packet traces of a
transfer in which the receiving application terminates abnormally.
When doing so, there can be an ambiguity (if only looking at the
trace) as to whether the receiving TCP did indeed have unread data
that it could now no longer deliver. To provoke this to happen,
it may help to suspend the receiving application so that it fails
to consume any data, eventually exhausting the advertised window.
At this point, since the advertised window is zero, we know that

Paxson, et. al. Informational [Page 531

RFC 2525 TCP Implementation Problems March 1999

the receiving TCP has undelivered ata buffered Terminating
the application process then should suffice to t the
correctness of the TCP's behavior.

2.18.

Name of Problem
Options missing from TCP MSS calculation

Classification
Reliability / performance

Description
When a TCP determines how much data to send per packet, it
calculates a segment size based on the MTU of the path. It must
then subtract from that MTU the size of the IP and TCP headers in
the packet. If IP options and TCP options are not taken into
account correctly in this calculation, the resulting segment size
may be too large. TCPs that do so are said to exhibit "Options
missing from TCP MSS calculation1I.

Significance
In some implementations, this causes the transmission of strangely
fragmented p ckets. In some implementations with Path MTU (PMTU)
discovery [C11911, this problem can actually result in a total
failure to transmit any data at all, regardless of the environment
(see below).

Arguably, especially since the wide deployment of firewalls, IP
options appear only rarely in normal operations.

Implications
In implementations using PMTU discovery, this problem can result
in packets that are too large for the output interface, and that
have the DF (don't fragment) bit set in the IP header. Thus, the
IP layer on the local machine is not allowed to fragment the
packet to send it out the interface. It instead informs the TCP
layer of the correct MTU size of the interface; the TCP layer
again miscomputes the MSS by failing to take into account the size
of IP options; and the problem repeats, with no data flowing.

Relevant RFCs
2 describes the calculation of the tive send MSS. RFC
scribes Path MTU discover

Paxson, et. al. Informational [Page 541

RFC 2525 TCP Implementation Problems March 1999

Trace file demonstrating it
Trace file taking using tcpdump on host C. The first trace
demonstrates the fragmentation that occurs without path MTU
discovery:

13:55:25.488728 A.65528 > C.discard:
P 567833:569273(1440) ack 1 win 17520
cnop,nop,timestamp 3839 1026342>
(frag 20828:1472@0+)
(ttl 62, optlen=8 LSRR{B#} NOP)

13:55:25.488943 A > C:
(frag 20828:8@1472)
(ttl 62, optlen=8 LSRR{B#} NOP)

13:55:25.489052 C.discard > A.65528:
. ack 566385 win 60816
cnop,nop,timestamp 1026345 3839> (DF)
(ttl 6 0 , id 41266)

Host A repeatedly sends 1440-octet data segments, but these hare
fragmented into two packets, one with 1432 octets of data, and
another with 8 octets of data.

The second trace demonstrates the failure to send any data
segments, sometimes seen with hosts doing path MTU discovery:

13:55:44.332219 A.65527 > C.discard:
S 1018235390:l018235390 (0) win 16384
cmss 1460,nop,wscale O,nop,nop,timestamp 3876 O > (DF)
(ttl 62, id 20912, optlen=8 LSRR{B#} NOP)

13:55:44.333015 C-discard > A.65527:
S 1271629000:1271629000(0) ack 1018235391 win 60816
cmss 1460,nop,wscale O,nop,nop,timestamp 1026383 3876> (DF)
(ttl 6 0 , id 41427)

13:55:44.333206 C.discard > A.65527:
S 1271629000:1271629000(0) ack 1018235391 win 60816
cmss 1460,nop,wscale O,nop,nop,timestamp 1026383 3876> (DF)
(ttl 6 0 , id 41427)

This is all of the activity seen on this connection. Eventually
host C will time out attempting to establish the connection.

How to detect
The I'netcatll utility [Hobbit961 is useful for generating source
routed packets:

Paxson, et. al. Informational [Page 551

RFC 2525 TCP Implementation Problems March 1999

1% nc C discard
(interactive typing)
^C
2% nc C discard e /dev/zero
^C
3% nc -g B C discard
(interactive typing)
^C
4% nc -g B C discard e /dev/zero
*C

Lines 1 through 3 should generate appropriate packets, which can
be verified using tcpdump. If the problem is present, line 4
should generate one of the two kinds of packet traces shown.

How to fix
The implementation should ensure that the effective send MSS
calculation includes a term for the IP and TCP options, as
mandated by RFC 1122 .

3 . Security Considerations

This memo does not discuss any specific security-related TCP
implementation problems, as the working group decided to pursue
documenting those in a separate document. Some of the implementation
problems discussed here, however, can be used for denial-of-service
attacks. Those classified as congestion control present
opportunities to subvert TCPs used for legitimate data transfer into
excessively loading network elements. Those classified as
slperformanceff , (Ireliability1I and "resource management" may be
exploitable for launching surreptitious denial-of-service attacks
against the user of the TCP. Both of these types of attacks can be
extremely difficult to detect because in most respects they look
identical to legitimate network traffic.

4. Acknowledgements

Thanks to numerous correspondents on the tcp-imp1 mailing list for
their input: Steve Alexander, Larry Backman, Jerry Chu, Alan Cox,
Kevin Fall, Richard Fox, Jim Gettys, Rick Jones, Allison Mankin, Neal
McBurnett, Perry Metzger, der Mouse, Thomas Narten, Andras Olah,
Steve Parker, Francesco Potorti', Luigi Rizzo, Allyn Romanow, A1
Smith, Jerry Toporek, Joe Touch, and Curtis Villamizar.

Thanks also to Josh Cohen for the traces documenting the IIFailure to
send a RST after Half Duplex Close!' problem; and to John Polstra, who
analyzed the "Window probe deadlock" problem.

Paxson, et. al. Informational [Page 561

RFC 2525

5 . References

[Allman971

[RFC24 14]

[RFC11221

[RFC2 1191

[Brakmog 5 I

[RFC8 13 1

LDawson97 I

[Fall 9 6 I

[Hobbit 96 1

[Hoe96 I

TCP Implementation Problems March 1999

M. Allman, "Fixing Two BSD TCP Bugs," Technical Report
CR-204151, NASA Lewis Research Center, Oc
http://roland.grc.nasa.gov/-mallman/papers/bug.ps

Allman, M., Floyd, S. and C. Partridge, "Increasing
TCP's Initial Windowt1, RFC 2414, September 1998.

Braden, R., Editor, "Requirements for Internet Hosts - -
Communication Layerst1, STD 3, RFC 1122, October 1989.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement LevelsI1, BCP 14, RFC 2119, March 1997.

L. Brakmo and L. Peterson, "Performance Problems in
BSD4.4 TCP," ACM Computer Communication Review,
25 (5) :69-86, 1995.

Clark, D., llWindow and Acknowledgement Strategy in TCP,"
RFC 813, July 1982.

S. Dawson, F. Jahanian, and T. Mitton, "Experiments on
Six Commercial TCP Implementations Using a Software
Fault Injection To01,l~ to appear in Software Practice &
Experience, 1997. A technical report version of this
paper can be obtained at
ftp://rtcl.eecs.umich.edu/outgoing/sdawson/CSE-TR-298-
96.ps.g~.

K. Fall and S. Floyd, llSimulation-based Comparisons of
Tahoe, Reno, and SACK TCP," ACM Computer Communication
Review, 26 (3) :5-21, 1996.

Hobbit, Avian Research, netcat, available via anonymous
ftp to ftp.avian.org, 1996.

J. Hoe, IIImproving the Start-up Behavior of a Congestion
Control Scheme for TCP," Proc. SIGCOMM '96.

[Jacobson881 V. Jacobson, "Congestion Avoidance and Control,1t Proc.
SIGCOMM '88. ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[Jacobson891 V. Jacobson, C. Leres, and S. McCanne, tcpdump,
available via anonymous ftp to ftp.ee.lbl.gov, Jun.
1989.

Paxson, et. al. Informational [Page 571

RFC 2525

[RFC2 0 181

[RFC119 1 I

[RFC8 96 1

[Paxson97]

[RFC7 93 1

[RFC2 00 11

[Stevens941

[Wright 951

TCP Implementation Problems March 1999

Mathis, M. , Mahdavi, J. , Floyd, S . and A. Romanow, P
Selective Acknowledgement Options", RFC 2018
1996.

Mogul , J . Deering very", RFC
1191, No 1990.

Nagle, J., "Congestion Control in IP/TCP I
RFC 896, January 1984.

son, "Automated Packet Trace Analysi
entations," Proc. SIGCOMM '97, available from

ftp://ftp.ee.lbl.gov/papers/vp-tcpanaly-sigcomm97.ps.Z.

Postel, J., Editor, "Transmission Control STD
7, RFC 793, September 1981.

Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms1I, RFC 2001,
January 1997.

W. Stevens, I1TCP/IP Illustrated, Volume 1", Add'ison-
Wesley Publishing Company, Reading, Massachusetts, 1994.

G. Wright and W. Stevens, IrTCP/IP Illustrated, Volume
2", Addison-Wesley Publishing Company, Reading
Massachusetts, 1995.

6. Authors' Addresses

Vern Paxson
ACIRI / ICs1
1947 Center Street
Suite 600
Berkeley, CA 94704-1198

Phone: +1 510/642-4274 x302
EMail: vern@aciri.org

Paxson, et. al. Informational [Page 581

RFC 2525 TCP Implementation Problems

Mark Allman cmallman@grc.nasa.gov>
NASA Glenn Research Center/Sterling Software
Lewis Field
21000 Brookpark Road

Cleveland, OH 44135
USA

MS 54-2

Phone: +1 216 /433-6586
Email: mallman@grc.nasa.gov

Scott Dawson
Real-Time Computing Laboratory
EECS Building
University of Michigan
Ann Arbor, MI 48109-2122
USA

Phone: +1 313/763-5363
EMail: sdawson@eecs.umich.edu

William C. Fenner
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
USA

Phone: +1 650/812-4816
EMail: fenner@parc.xerox.com

Jim Griner <jgriner@grc.nasa.gov>
NASA Glenn Research Center
Lewis Field
21000 Brookpark Road

Cleveland, OH 44135
USA

MS 54-2

Phone: +1 216/433-5787
EMail: jgriner@grc.nasa.gov

Paxson, et. al. Informational

March 1999

[Page 591

RFC 2525 TCP Implementation Problems

Ian Heavens
Spider Software Ltd.
8 John’s Place, Leith
Edinburgh EH6 7EL
UK

Phone: +44 131/475-7015
EMail: ian@spider.com

Kevin Lahey
NASA Ames Research Center/MRJ
MS 258-6
Moffett Field, CA 94035
USA

Phone: +1 650/604-4334
EMail: kml@nas.nasa.gov

Jeff Semke
Pittsburgh Supercomputing Center
4400 Fifth Ave
Pittsburgh, PA 15213
USA

Phone: +1 412/268-4960
EMail: semke@psc.edu

Bernie Volz
Process Software Corporation
959 Concord Street
Framingham, MA 01701
USA

Phone: +1 508/879-6994
EMail: volz@process.com

Paxson, et. al. Informational

March 1999

[Page 601

$FC 2525 TCP Implementation Problems

7.

March 1999

Full Copyright Statement

Copyright (C) The Internet Society (1999). All

This docum translations of be
others, an ative works that t on
or assist in its implementation may be prepared,
and distributed, in whole or in part, withou
kind, provided that the above copyright noti
included on a l l such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS!' basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Paxson, et. al. Informational [Page 611

